Search Results

Now showing 1 - 4 of 4
  • Item
    Trajectories of the Earth System in the Anthropocene
    (Washington, DC : NAS, 2018) Steffen, Will; Rockström, Johan; Richardson, Katherine; Lenton, Timothy M.; Folke, Carl; Liverman, Diana; Summerhayes, Colin P.; Barnosky, Anthony D.; Cornell, Sarah E.; Crucifix, Michel; Donges, Jonathan F.; Fetzer, Ingo; Lade, Steven J.; Scheffer, Marten; Winkelmann, Ricarda; Schellnhuber, Hans Joachim
    We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a “Hothouse Earth” pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System—biosphere, climate, and societies—and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.
  • Item
    Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere
    (Washington, DC : NAS, 2018) Ditas, Jeannine; Ma, Nan; Zhang, Yuxuan; Assmann, Denise; Neumaier, Marco; Riede, Hella; Karu, Einar; Williams, Jonathan; Scharffe, Dieter; Wang, Qiaoqiao; Saturno, Jorge; Schwarz, Joshua P.; Katich, Joseph M.; McMeeking, Gavin R.; Zahn, Andreas; Hermann, Markus; Brenninkmeijer, Carl A. M.; Andreae, Meinrat O.; Pöschl, Ulrich; Su, Hang; Cheng, Yafang
    Wildfires inject large amounts of black carbon (BC) particles into the atmosphere, which can reach the lowermost stratosphere (LMS) and cause strong radiative forcing. During a 14-month period of observations on board a passenger aircraft flying between Europe and North America, we found frequent and widespread biomass burning (BB) plumes, influencing 16 of 160 flight hours in the LMS. The average BC mass concentrations in these plumes (∼140 ng·m−3, standard temperature and pressure) were over 20 times higher than the background concentration (∼6 ng·m−3) with more than 100-fold enhanced peak values (up to ∼720 ng·m−3). In the LMS, nearly all BC particles were covered with a thick coating. The average mass equivalent diameter of the BC particle cores was ∼120 nm with a mean coating thickness of ∼150 nm in the BB plume and ∼90 nm with a coating of ∼125 nm in the background. In a BB plume that was encountered twice, we also found a high diameter growth rate of ∼1 nm·h−1 due to the BC particle coatings. The observed high concentrations and thick coatings of BC particles demonstrate that wildfires can induce strong local heating in the LMS and may have a significant influence on the regional radiative forcing of climate.
  • Item
    Nanovesicles displaying functional linear and branched oligomannose self-assembled from sequence-defined Janus glycodendrimers
    (Washington, DC : NAS, 2020) Xiao, Qi; Delbianco, Martina; Sherman, Samuel E.; Reveron Perez, Aracelee M.; Bharate, Priya; Pardo-Vargas, Alonso; Rodriguez-Emmenegger, Cesar; Kostina, Nina Yu; Rahimi, Khosrow; Söder, Dominik; Möller, Martin; Klein, Michael L.; Seeberger, Peter H.; Percec, Virgil
    Cell surfaces are often decorated with glycoconjugates that contain linear and more complex symmetrically and asymmetrically branched carbohydrates essential for cellular recognition and communication processes. Mannose is one of the fundamental building blocks of glycans in many biological membranes. Moreover, oligomannoses are commonly found on the surface of pathogens such as bacteria and viruses as both glycolipids and glycoproteins. However, their mechanism of action is not well understood, even though this is of great potential interest for translational medicine. Sequence-defined amphiphilic Janus glycodendrimers containing simple mono- and disaccharides that mimic glycolipids are known to self-assemble into glycodendrimersomes, which in turn resemble the surface of a cell by encoding carbohydrate activity via supramolecular multivalency. The synthetic challenge of preparing Janus glycodendrimers containing more complex linear and branched glycans has so far prevented access to more realistic cell mimics. However, the present work reports the use of an isothiocyanate-amine “click”-like reaction between isothiocyanate-containing sequence-defined amphiphilic Janus dendrimers and either linear or branched oligosaccharides containing up to six monosaccharide units attached to a hydrophobic amino-pentyl linker, a construct not expected to assemble into glycodendrimersomes. Unexpectedly, these oligoMan-containing dendrimers, which have their hydrophobic linker connected via a thiourea group to the amphiphilic part of Janus glycodendrimers, self-organize into nanoscale glycodendrimersomes. Specifically, the mannose-binding lectins that best agglutinate glycodendrimersomes are those displaying hexamannose. Lamellar “raft-like” nanomorphologies on the surface of glycodendrimersomes, self-organized from these sequence-defined glycans, endow these membrane mimics with high biological activity. © 2020 National Academy of Sciences. All rights reserved.
  • Item
    Drought losses in China might double between the 1.5 °C and 2.0 °C warming
    (Washington, DC : NAS, 2018) Su, Buda; Huang, Jinlong; Fischer, Thomas; Wang, Yanjun; Kundzewicz, Zbigniew W.; Zhai, Jianqing; Sun, Hemin; Wang, Anqian; Zeng, Xiaofan; Wang, Guojie; Tao, Hui; Gemmer, Marco; Li, Xiucang; Jiang, Tong
    We project drought losses in China under global temperature increase of 1.5 °C and 2.0 °C, based on the Standardized Precipitation Evapotranspiration Index (SPEI) and the Palmer Drought Severity Index (PDSI), a cluster analysis method, and “intensity-loss rate” function. In contrast to earlier studies, to project the drought losses, we predict the regional gross domestic product under shared socioeconomic pathways instead of using a static socioeconomic scenario. We identify increasing precipitation and evapotranspiration pattern for the 1.5 °C and 2.0 °C global warming above the preindustrial at 2020–2039 and 2040–2059, respectively. With increasing drought intensity and areal coverage across China, drought losses will soar. The estimated loss in a sustainable development pathway at the 1.5 °C warming level increases 10-fold in comparison with the reference period 1986–2005 and nearly threefold relative to the interval 2006–2015. However, limiting the temperature increase to 1.5 °C can reduce the annual drought losses in China by several tens of billions of US dollars, compared with the 2.0 °C warming.