Search Results

Now showing 1 - 2 of 2
  • Item
    Evolutionary design of explainable algorithms for biomedical image segmentation
    ([London] : Nature Publishing Group UK, 2023) Cortacero, Kévin; McKenzie, Brienne; Müller, Sabina; Khazen, Roxana; Lafouresse, Fanny; Corsaut, Gaëlle; Van Acker, Nathalie; Frenois, François-Xavier; Lamant, Laurence; Meyer, Nicolas; Vergier, Béatrice; Wilson, Dennis G.; Luga, Hervé; Staufer, Oskar; Dustin, Michael L.; Valitutti, Salvatore; Cussat-Blanc, Sylvain
    An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. However, these frameworks require large human-annotated datasets for training and the resulting “black box” models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming-based computational strategy that generates fully transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets. This Few-Shot Learning method confers tremendous flexibility, speed, and functionality to this approach. We then deploy Kartezio to solve a series of semantic and instance segmentation problems, and demonstrate its utility across diverse images ranging from multiplexed tissue histopathology images to high resolution microscopy images. While the flexibility, robustness and practical utility of Kartezio make this fully explicable evolutionary designer a potential game-changer in the field of biomedical image processing, Kartezio remains complementary and potentially auxiliary to mainstream Deep Learning approaches.
  • Item
    ColiCoords: A Python package for the analysis of bacterial fluorescence microscopy data
    (San Francisco, California, US : PLOS, 2019) Smit, Jochem H.; Li, Yichen; Warszawik, Eliza M.; Herrmann, Andreas; Cordes, Thorben; Gilestro, Giorgio F
    Single-molecule fluorescence microscopy studies of bacteria provide unique insights into the mechanisms of cellular processes and protein machineries in ways that are unrivalled by any other technique. With the cost of microscopes dropping and the availability of fully automated microscopes, the volume of microscopy data produced has increased tremendously. These developments have moved the bottleneck of throughput from image acquisition and sample preparation to data analysis. Furthermore, requirements for analysis procedures have become more stringent given the demand of various journals to make data and analysis procedures available. To address these issues we have developed a new data analysis package for analysis of fluorescence microscopy data from rod-like cells. Our software ColiCoords structures microscopy data at the single-cell level and implements a coordinate system describing each cell. This allows for the transformation of Cartesian coordinates from transmission light and fluorescence images and single-molecule localization microscopy (SMLM) data to cellular coordinates. Using this transformation, many cells can be combined to increase the statistical power of fluorescence microscopy datasets of any kind. ColiCoords is open source, implemented in the programming language Python, and is extensively documented. This allows for modifications for specific needs or to inspect and publish data analysis procedures. By providing a format that allows for easy sharing of code and associated data, we intend to promote open and reproducible research. The source code and documentation can be found via the project’s GitHub page.