Search Results

Now showing 1 - 2 of 2
  • Item
    Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves
    ([London] : Nature Publishing Group UK, 2022) Zanotto, Simone; Biasiol, Giorgio; Santos, Paulo V.; Pitanti, Alessandro
    Wave refraction at an interface between different materials is a basic yet fundamental phenomenon, transversal to several scientific realms – electromagnetism, gas and fluid acoustics, solid mechanics, and possibly also matter waves. Under specific circumstances, mostly enabled by structuration below the wavelength scale, i.e., through the metamaterial approach, waves undergo negative refraction, eventually enabling superlensing and transformation optics. However, presently known negative refraction systems are symmetric, in that they cannot distinguish between positive and negative angles of incidence. Exploiting a metamaterial with an asymmetric unit cell, we demonstrate that the aforementioned symmetry can be broken, ultimately relying on the specific shape of the Bloch mode isofrequency curves. Our study specialized upon a mechanical metamaterial operating at GHz frequency, which is by itself a building block for advanced technologies such as chip-scale hybrid optomechanical and electromechanical devices. However, the phenomenon is based on general wave theory concepts, and it applies to any frequency and time scale for any kind of linear waves, provided that a suitable shaping of the isofrequency contours is implemented.
  • Item
    Tunable plasmonic resonances in Si-Au slanted columnar heterostructure thin films
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Kılıç, Ufuk; Mock, Alyssa; Feder, René; Sekora, Derek; Hilfiker, Matthew; Korlacki, Rafał; Schubert, Eva; Argyropoulos, Christos; Schubert, Mathias
    We report on fabrication of spatially-coherent columnar plasmonic nanostructure superlattice-type thin films with high porosity and strong optical anisotropy using glancing angle deposition. Subsequent and repeated depositions of silicon and gold lead to nanometer-dimension subcolumns with controlled lengths. We perform generalized spectroscopic ellipsometry measurements and finite element method computations to elucidate the strongly anisotropic optical properties of the highly-porous Si-Au slanted columnar heterostructures. The occurrence of a strongly localized plasmonic mode with displacement pattern reminiscent of a dark quadrupole mode is observed in the vicinity of the gold subcolumns. We demonstrate tuning of this quadrupole-like mode frequency within the near-infrared spectral range by varying the geometry of Si-Au slanted columnar heterostructures. In addition, coupled-plasmon-like and inter-band transition-like modes occur in the visible and ultra-violet spectral regions, respectively. We elucidate an example for the potential use of Si-Au slanted columnar heterostructures as a highly porous plasmonic sensor with optical read out sensitivity to few parts-per-million solvent levels in water.