Search Results

Now showing 1 - 2 of 2
  • Item
    The stability of memristive multidirectional associative memory neural networks with time-varying delays in the leakage terms via sampled-data control
    (San Francisco, California, US : PLOS, 2018) Wang, Weiping; Yu, Xin; Luo, Xiong; Wang, Long; Li, Lixiang; Kurths, Jürgen; Zhao, Wenbing; Xiao, Jiuhong
    In this paper, we propose a new model of memristive multidirectional associative memory neural networks, which concludes the time-varying delays in leakage terms via sampled-data control. We use the input delay method to turn the sampling system into a continuous time-delaying system. Then we analyze the exponential stability and asymptotic stability of the equilibrium points for this model. By constructing a suitable Lyapunov function, using the Lyapunov stability theorem and some inequality techniques, some sufficient criteria for ensuring the stability of equilibrium points are obtained. Finally, numerical examples are given to demonstrate the effectiveness of our results.
  • Item
    Detection of vancomycin resistances in enterococci within 3 1/2 Hours
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Schröder, U.-Ch.; Beleites, C.; Assmann, C.; Glaser, U.; Hübner, U.; Pfister, W.; Fritzsche, W.; Popp, J.; Neugebauer, U.
    Vancomycin resistant enterococci (VRE) constitute a challenging problem in health care institutions worldwide. Novel methods to rapidly identify resistances are highly required to ensure an early start of tailored therapy and to prevent further spread of the bacteria. Here, a spectroscopy-based rapid test is presented that reveals resistances of enterococci towards vancomycin within 3.5 hours. Without any specific knowledge on the strain, VRE can be recognized with high accuracy in two different enterococci species. By means of dielectrophoresis, bacteria are directly captured from dilute suspensions, making sample preparation very easy. Raman spectroscopic analysis of the trapped bacteria over a time span of two hours in absence and presence of antibiotics reveals characteristic differences in the molecular response of sensitive as well as resistant Enterococcus faecalis and Enterococcus faecium. Furthermore, the spectroscopic fingerprints provide an indication on the mechanisms of induced resistance in VRE.