Search Results

Now showing 1 - 3 of 3
  • Item
    Strong time dependence of ocean acidification mitigation by atmospheric carbon dioxide removal
    ([London] : Nature Publishing Group UK, 2019) Hofmann, M.; Mathesius, S.; Kriegler, E.; van Vuuren, D.P.; Schellnhuber, H.J.
    In Paris in 2015, the global community agreed to limit global warming to well below 2 ∘C, aiming at even 1.5 ∘C. It is still uncertain whether these targets are sufficient to preserve marine ecosystems and prevent a severe alteration of marine biogeochemical cycles. Here, we show that stringent mitigation strategies consistent with the 1.5 ∘C scenario could, indeed, provoke a critical difference for the ocean’s carbon cycle and calcium carbonate saturation states. Favorable conditions for calcifying organisms like tropical corals and polar pteropods, both of major importance for large ecosystems, can only be maintained if CO2 emissions fall rapidly between 2025 and 2050, potentially requiring an early deployment of CO2 removal techniques in addition to drastic emissions reduction. Furthermore, this outcome can only be achieved if the terrestrial biosphere remains a carbon sink during the entire 21st century.
  • Item
    Effects of changing population or density on urban carbon dioxide emissions
    ([London] : Nature Publishing Group UK, 2019) Ribeiro, Haroldo V.; Rybski, Diego; Kropp, Jürgen P.
    The question of whether urbanization contributes to increasing carbon dioxide emissions has been mainly investigated via scaling relationships with population or population density. However, these approaches overlook the correlations between population and area, and ignore possible interactions between these quantities. Here, we propose a generalized framework that simultaneously considers the effects of population and area along with possible interactions between these urban metrics. Our results significantly improve the description of emissions and reveal the coupled role between population and density on emissions. These models show that variations in emissions associated with proportionate changes in population or density may not only depend on the magnitude of these changes but also on the initial values of these quantities. For US areas, the larger the city, the higher is the impact of changing its population or density on its emissions; but population changes always have a greater effect on emissions than population density.
  • Item
    Physical and virtual carbon metabolism of global cities
    ([London] : Nature Publishing Group UK, 2020) Chen, Shaoqing; Chen, Bin; Feng, Kuishuang; Liu, Zhu; Fromer, Neil; Tan, Xianchun; Alsaedi, Ahmed; Hayat, Tasawar; Weisz, Helga; Schellnhuber, Hans Joachim; Hubacek, Klaus
    Urban activities have profound and lasting effects on the global carbon balance. Here we develop a consistent metabolic approach that combines two complementary carbon accounts, the physical carbon balance and the fossil fuel-derived gaseous carbon footprint, to track carbon coming into, being added to urban stocks, and eventually leaving the city. We find that over 88% of the physical carbon in 16 global cities is imported from outside their urban boundaries, and this outsourcing of carbon is notably amplified by virtual emissions from upstream activities that contribute 33–68% to their total carbon inflows. While 13–33% of the carbon appropriated by cities is immediately combusted and released as CO2, between 8 and 24% is stored in durable household goods or becomes part of other urban stocks. Inventorying carbon consumed and stored for urban metabolism should be given more credit for the role it can play in stabilizing future global climate.