Search Results

Now showing 1 - 4 of 4
  • Item
    Computational design and optimization of electro-physiological sensors
    ([London] : Nature Publishing Group UK, 2021) Nittala, Aditya Shekhar; Karrenbauer, Andreas; Khan, Arshad; Kraus, Tobias; Steimle, Jürgen
    Electro-physiological sensing devices are becoming increasingly common in diverse applications. However, designing such sensors in compact form factors and for high-quality signal acquisition is a challenging task even for experts, is typically done using heuristics, and requires extensive training. Our work proposes a computational approach for designing multi-modal electro-physiological sensors. By employing an optimization-based approach alongside an integrated predictive model for multiple modalities, compact sensors can be created which offer an optimal trade-off between high signal quality and small device size. The task is assisted by a graphical tool that allows to easily specify design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. They demonstrate that generated designs can achieve an optimal balance between the size of the sensor and its signal acquisition capability, outperforming expert generated solutions.
  • Item
    Partial cross mapping eliminates indirect causal influences
    ([London] : Nature Publishing Group UK, 2020) Leng, Siyang; Ma, Huanfei; Kurths, Jürgen; Lai, Ying-Cheng; Lin, Wei; Aihara, Kazuyuki; Chen, Luonan
    Causality detection likely misidentifies indirect causations as direct ones, due to the effect of causation transitivity. Although several methods in traditional frameworks have been proposed to avoid such misinterpretations, there still is a lack of feasible methods for identifying direct causations from indirect ones in the challenging situation where the variables of the underlying dynamical system are non-separable and weakly or moderately interacting. Here, we solve this problem by developing a data-based, model-independent method of partial cross mapping based on an articulated integration of three tools from nonlinear dynamics and statistics: phase-space reconstruction, mutual cross mapping, and partial correlation. We demonstrate our method by using data from different representative models and real-world systems. As direct causations are keys to the fundamental underpinnings of a variety of complex dynamics, we anticipate our method to be indispensable in unlocking and deciphering the inner mechanisms of real systems in diverse disciplines from data.
  • Item
    Network-induced multistability through lossy coupling and exotic solitary states
    ([London] : Nature Publishing Group UK, 2020) Hellmann, Frank; Schultz, Paul; Jaros, Patrycja; Levchenko, Roman; Kapitaniak, Tomasz; Kurths, Jürgen; Maistrenko, Yuri
    The stability of synchronised networked systems is a multi-faceted challenge for many natural and technological fields, from cardiac and neuronal tissue pacemakers to power grids. For these, the ongoing transition to distributed renewable energy sources leads to a proliferation of dynamical actors. The desynchronisation of a few or even one of those would likely result in a substantial blackout. Thus the dynamical stability of the synchronous state has become a leading topic in power grid research. Here we uncover that, when taking into account physical losses in the network, the back-reaction of the network induces new exotic solitary states in the individual actors and the stability characteristics of the synchronous state are dramatically altered. These effects will have to be explicitly taken into account in the design of future power grids. We expect the results presented here to transfer to other systems of coupled heterogeneous Newtonian oscillators.
  • Item
    Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate
    ([London] : Springer Nature, 2024) Reichlova, Helena; Lopes Seeger, Rafael; González-Hernández, Rafael; Kounta, Ismaila; Schlitz, Richard; Kriegner, Dominik; Ritzinger, Philipp; Lammel, Michaela; Leiviskä, Miina; Birk Hellenes, Anna; Olejník, Kamil; Petřiček, Vaclav; Doležal, Petr; Horak, Lukas; Schmoranzerova, Eva; Badura, Antonín; Bertaina, Sylvain; Thomas, Andy; Baltz, Vincent; Michez, Lisa; Sinova, Jairo; Goennenwein, Sebastian T. B.; Jungwirth, Tomáš; Šmejkal, Libor
    Phases with spontaneous time-reversal (T) symmetry breaking are sought after for their anomalous physical properties, low-dissipation electronic and spin responses, and information-technology applications. Recently predicted altermagnetic phase features an unconventional and attractive combination of a strong T-symmetry breaking in the electronic structure and a zero or only weak-relativistic magnetization. In this work, we experimentally observe the anomalous Hall effect, a prominent representative of the T-symmetry breaking responses, in the absence of an external magnetic field in epitaxial thin-film Mn5Si3 with a vanishingly small net magnetic moment. By symmetry analysis and first-principles calculations we demonstrate that the unconventional d-wave altermagnetic phase is consistent with the experimental structural and magnetic characterization of the Mn5Si3 epilayers, and that the theoretical anomalous Hall conductivity generated by the phase is sizable, in agreement with experiment. An analogy with unconventional d-wave superconductivity suggests that our identification of a candidate of unconventional d-wave altermagnetism points towards a new chapter of research and applications of magnetic phases.