Search Results

Now showing 1 - 2 of 2
  • Item
    Memory effect assisted imaging through multimode optical fibres
    ([London] : Nature Publishing Group UK, 2021) Li, Shuhui; Horsley, Simon A.R.; Tyc, Tomáš; Čižmár, Tomáš; Phillips, David B.
    When light propagates through opaque material, the spatial information it holds becomes scrambled, but not necessarily lost. Two classes of techniques have emerged to recover this information: methods relying on optical memory effects, and transmission matrix (TM) approaches. Here we develop a general framework describing the nature of memory effects in structures of arbitrary geometry. We show how this framework, when combined with wavefront shaping driven by feedback from a guide-star, enables estimation of the TM of any such system. This highlights that guide-star assisted imaging is possible regardless of the type of memory effect a scatterer exhibits. We apply this concept to multimode fibres (MMFs) and identify a ‘quasi-radial’ memory effect. This allows the TM of an MMF to be approximated from only one end - an important step for micro-endoscopy. Our work broadens the applications of memory effects to a range of novel imaging and optical communication scenarios.
  • Item
    Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Tuniz, Alessandro; Kuhlmey, Boris T.
    We study full vector imaging of two dimensional source fields through finite slabs of media with extreme anisotropy, such as hyperbolic media. For this, we adapt the exact transfer matrix method for uniaxial media to calculate the two dimensional transfer functions and point spread functions for arbitrary vector fields described in Cartesian coordinates. This is more convenient for imaging simulations than the use of the natural, propagation direction-dependent TE/TM basis and clarifies which field components contribute to sub-diffraction imaging. We study the effect of ordinary waves on image quality, which previous one-dimensional approaches could not consider. Perfect sub-diffraction imaging can be achieved if longitudinal fields are measured, but in the more common case where field intensities or transverse fields are measured, ordinary waves cause artefacts. These become more prevalent when attempting to image large objects with high resolution. We discuss implications for curved hyperbolic imaging geometries such as hyperlenses.