Search Results

Now showing 1 - 2 of 2
  • Item
    Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: A shared electromagnetic origin
    (London : Nature Publishing Group, 2017) Rudenko, Anton; Colombier, Jean-Philippe; Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn; Itina, Tatiana E.
    Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements.
  • Item
    Restoring a nearly free-standing character of graphene on Ru(0001) by oxygen intercalation
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Voloshina, Elena; Berdunov, Nikolai; Dedkov, Yuriy
    Realization of a free-standing graphene is always a demanding task. Here we use scanning probe microscopy and spectroscopy to study the crystallographic structure and electronic properties of the uniform nearly free-standing graphene layers obtained by intercalation of oxygen monolayer in the “strongly” bonded graphene/Ru(0001) interface. Spectroscopic data show that such graphene layer is heavily p-doped with the Dirac point located at 552 meV above the Fermi level. Experimental data are understood within density-functional theory approach and the observed effects are in good agreement with the theoretical data.