Search Results

Now showing 1 - 2 of 2
  • Item
    X-ray quasi-periodic eruptions from two previously quiescent galaxies
    (London [u.a.] : Nature Publ. Group, 2021) Arcodia, R.; Merloni, A.; Nandra, K.; Buchner, J.; Salvato, M.; Pasham, D.; Remillard, R.; Comparat, J.; Lamer, G.; Ponti, G.; Malyali, A.; Wolf, J.; Arzoumanian, Z.; Bogensberger, D.; Buckley, D.A.H.; Gendreau, K.; Gromadzki, M.; Kara, E.; Krumpe, M.; Markwardt, C.; Ramos-Ceja, M.E.; Rau, A.; Schramm, M.; Schwope, A.
    Quasi-periodic eruptions (QPEs) are very-high-amplitude bursts of X-ray radiation recurring every few hours and originating near the central supermassive black holes of galactic nuclei1,2. It is currently unknown what triggers these events, how long they last and how they are connected to the physical properties of the inner accretion flows. Previously, only two such sources were known, found either serendipitously or in archival data1,2, with emission lines in their optical spectra classifying their nuclei as hosting an actively accreting supermassive black hole3,4. Here we report observations of QPEs in two further galaxies, obtained with a blind and systematic search of half of the X-ray sky. The optical spectra of these galaxies show no signature of black hole activity, indicating that a pre-existing accretion flow that is typical of active galactic nuclei is not required to trigger these events. Indeed, the periods, amplitudes and profiles of the QPEs reported here are inconsistent with current models that invoke radiation-pressure-driven instabilities in the accretion disk5–9. Instead, QPEs might be driven by an orbiting compact object. Furthermore, their observed properties require the mass of the secondary object to be much smaller than that of the main body10, and future X-ray observations may constrain possible changes in their period owing to orbital evolution. This model could make QPEs a viable candidate for the electromagnetic counterparts of so-called extreme-mass-ratio inspirals11–13, with considerable implications for multi-messenger astrophysics and cosmology14,15.
  • Item
    Gate-controlled quantum dots and superconductivity in planar germanium
    ([London] : Nature Publishing Group UK, 2018) Hendrickx, N.W.; Franke, D.P.; Sammak, A.; Kouwenhoven, M.; Sabbagh, D.; Yeoh, L.; Li, R.; Tagliaferri, M.L.V.; Virgilio, M.; Capellini, G.; Scappucci, G.; Veldhorst, M.
    Superconductors and semiconductors are crucial platforms in the field of quantum computing. They can be combined to hybrids, bringing together physical properties that enable the discovery of new emergent phenomena and provide novel strategies for quantum control. The involved semiconductor materials, however, suffer from disorder, hyperfine interactions or lack of planar technology. Here we realise an approach that overcomes these issues altogether and integrate gate-defined quantum dots and superconductivity into germanium heterostructures. In our system, heavy holes with mobilities exceeding 500,000 cm2 (Vs)−1 are confined in shallow quantum wells that are directly contacted by annealed aluminium leads. We observe proximity-induced superconductivity in the quantum well and demonstrate electric gate-control of the supercurrent. Germanium therefore has great promise for fast and coherent quantum hardware and, being compatible with standard manufacturing, could become a leading material for quantum information processing.