Search Results

Now showing 1 - 2 of 2
  • Item
    Maximally dissipative solutions for incompressible fluid dynamics
    (Cham (ZG) : Springer International Publishing AG, 2021) Lasarzik, Robert
    We introduce the new concept of maximally dissipative solutions for a general class of isothermal GENERIC systems. Under certain assumptions, we show that maximally dissipative solutions are well-posed as long as the bigger class of dissipative solutions is non-empty. Applying this result to the Navier–Stokes and Euler equations, we infer global well-posedness of maximally dissipative solutions for these systems. The concept of maximally dissipative solutions coincides with the concept of weak solutions as long as the weak solutions inherits enough regularity to be unique.
  • Item
    Analysis of improved Nernst–Planck–Poisson models of compressible isothermal electrolytes
    (Cham (ZG) : Springer International Publishing AG, 2020) Dreyer, Wolfgang; Druet, Pierre-Étienne; Gajewski, Paul; Guhlke, Clemens
    We consider an improved Nernst–Planck–Poisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non-equilibrium. The elastic deformation of the medium, that induces an inherent coupling of mass and momentum transport, is taken into account. The model consists of convection–diffusion–reaction equations for the constituents of the mixture, of the Navier–Stokes equation for the barycentric velocity and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, cross-diffusion phenomena must occur, and the mobility matrix (Onsager matrix) has a non-trivial kernel. In this paper, we establish the existence of a global-in-time weak solution, allowing for a general structure of the mobility tensor and for chemical reactions with fast nonlinear rates in the bulk and on the active boundary. We characterise the singular states of the system, showing that the chemical species can vanish only globally in space, and that this phenomenon must be concentrated in a compact set of measure zero in time.