Search Results

Now showing 1 - 3 of 3
  • Item
    Mass transport in multicomponent compressible fluids: Local and global well-posedness in classes of strong solutions for general class-one models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Bothe, Dieter; Druet, Pierre-Étienne
    We consider a system of partial differential equations describing mass transport in a multicomponent isothermal compressible fluid. The diffusion fluxes obey the Fick-Onsager or Maxwell- Stefan closure approach. Mechanical forces result into one single convective mixture velocity, the barycentric one, which obeys the Navier-Stokes equations. The thermodynamic pressure is defined by the Gibbs-Duhem equation. Chemical potentials and pressure are derived from a thermodynamic potential, the Helmholtz free energy, with a bulk density allowed to be a general convex function of the mass densities of the constituents. The resulting PDEs are of mixed parabolic-hyperbolic type. We prove two theoretical results concerning the well-posedness of the model in classes of strong solutions: 1. The solution always exists and is unique for short-times and 2. If the initial data are sufficiently near to an equilibrium solution, the well-posedness is valid on arbitrary large, but finite time intervals. Both results rely on a contraction principle valid for systems of mixed type that behave like the compressible Navier- Stokes equations. The linearised parabolic part of the operator possesses the self map property with respect to some closed ball in the state space, while being contractive in a lower order norm only. In this paper, we implement these ideas by means of precise a priori estimates in spaces of exact regularity.
  • Item
    Determination of stiffness and higher gradient coefficients by means of the embedded atom method: An approach for binary alloys
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Boehme, Thomas; Dreyer, Wolfgang; Müller, Wolfgang H.
    For a quantitative theoretical description of phase separation and coarsening reliable data of stiffness constants and the so called Higher Gradient Coefficients (HGCs) are required. For that reason pair potentials of the Lennard-Jones type were used in [1] to provide a theoretical tool for their quantitative determination. Following up on this work these quantities are now calculated by means of the Embedded-Atom Method (EAM), a recently developed approach to describe interatomic potentials in metals. This is done, first, to achieve a better agreement between predicted and experimentally observed stiffness data as well as to avoid artifacts, such as the Cauchy paradox, and, second, to increase the trustworthiness of the HGCs for which experimental data are rarely available. After an introduction to the fundamentals of EAM it is outlined how it can be used for calculating stiffness constants and HGCs. In particular, Johnson's modification of EAM for nearest neighbor interactions [3] is applied to present explicit numerical results for a case study alloy, Ag-Cu, which has a simpleface-centered-cubic crystal structure and where it is comparatively easy to obtain all the required analysis data from the literature and to experimentally compare the predictions of mechanical data.
  • Item
    A theory of generalised solutions for ideal gas mixtures with Maxwell--Stefan diffusion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Druet, Pierre-Étienne
    After the pioneering work by Giovangigli on mathematics of multicomponent flows, several attempts were made to introduce global weak solutions for the PDEs describing the dynamics of fluid mixtures. While the incompressible case with constant density was enlighted well enough due to results by Chen and Jüngel (isothermal case), or Marion and Temam, some open questions remain for the weak solution theory of gas mixtures with their corresponding equations of mixed parabolic-hyperbolic type. For instance, Mucha, Pokorny and Zatorska showed the possibility to stabilise the hyperbolic component by means of the Bresch-Desjardins technique and a regularisation of pressure preventing vacuum. The result by Dreyer, Druet, Gajewski and Guhlke avoids emphex machina stabilisations, but the mathematical assumption that the Onsager matrix is uniformly positive on certain subspaces leads, in the dilute limit, to infinite diffusion velocities which are not compatible with the Maxwell-Stefan form of diffusion fluxes. In this paper, we prove the existence of global weak solutions for isothermal and ideal compressible mixtures with natural diffusion. The main new tool is an asymptotic condition imposed at low pressure on the binary Maxwell-Stefan diffusivities, which compensates possibly extreme behaviour of weak solutions in the rarefied regime.