Search Results

Now showing 1 - 10 of 12
  • Item
    On the Regularity of Weak Solutions to Time-Periodic Navier–Stokes Equations in Exterior Domains
    (Basel : MDPI, 2022) Eiter, Thomas
    Consider the time-periodic viscous incompressible fluid flow past a body with non-zero velocity at infinity. This article gives sufficient conditions such that weak solutions to this problem are smooth. Since time-periodic solutions do not have finite kinetic energy in general, the well-known regularity results for weak solutions to the corresponding initial-value problem cannot be transferred directly. The established regularity criterion demands a certain integrability of the purely periodic part of the velocity field or its gradient, but it does not concern the time mean of these quantities.
  • Item
    A distributed control problem for a fractional tumor growth model
    (Basel : MDPI, 2019) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study the distributed optimal control of a system of three evolutionary equations involving fractional powers of three self-adjoint, monotone, unbounded linear operators having compact resolvents. The system is a generalization of a Cahn-Hilliard type phase field system modeling tumor growth that has been proposed by Hawkins-Daarud, van der Zee and Oden. The aim of the control process, which could be realized by either administering a drug or monitoring the nutrition, is to keep the tumor cell fraction under control while avoiding possible harm for the patient. In contrast to previous studies, in which the occurring unbounded operators governing the diffusional regimes were all given by the Laplacian with zero Neumann boundary conditions, the operators may in our case be different; more generally, we consider systems with fractional powers of the type that were studied in a recent work by the present authors. In our analysis, we show the Fréchet differentiability of the associated control-to-state operator, establish the existence of solutions to the associated adjoint system, and derive the first-order necessary conditions of optimality for a cost functional of tracking type. © 2019 by the authors.
  • Item
    Topology- and Geometry-Controlled Functionalization of Nanostructured Metamaterials
    (Basel : MDPI, 2023) Fomin, Vladimir M.; Marquardt, Oliver
    [no abstract available]
  • Item
    Environment-Assisted Invariance Does Not Necessitate Born’s Rule for Quantum Measurement
    (Basel : MDPI, 2023) Mertens, Lotte; van Wezel, Jasper
    The argument of environment-assisted invariance (known as envariance) implying Born’s rule is widely used in models for quantum measurement to reason that they must yield the correct statistics, specifically for linear models. However, it has recently been shown that linear collapse models can never give rise to Born’s rule. Here, we address this apparent contradiction and point out an inconsistency in the assumptions underlying the arguments based on envariance. We use a construction in which the role of the measurement machine is made explicit and shows that the presence of envariance does not imply that every measurement will behave according to Born’s rule. Rather, it implies that every quantum state allows a measurement machine to be constructed, which yields Born’s rule when measuring that particular state. This resolves the paradox and is in agreement with the recent result of objective collapse models necessarily being nonlinear.
  • Item
    Galilean Bulk-Surface Electrothermodynamics and Applications to Electrochemistry
    (Basel : MDPI, 2023) Müller, Rüdiger; Landstorfer, Manuel
    In this work, the balance equations of non-equilibrium thermodynamics are coupled to Galilean limit systems of the Maxwell equations, i.e., either to (i) the quasi-electrostatic limit or (ii) the quasi-magnetostatic limit. We explicitly consider a volume (Formula presented.), which is divided into (Formula presented.) and (Formula presented.) by a possibly moving singular surface S, where a charged reacting mixture of a viscous medium can be present on each geometrical entity (Formula presented.). By the restriction to the Galilean limits of the Maxwell equations, we achieve that only subsystems of equations for matter and electromagnetic fields are coupled that share identical transformation properties with respect to observer transformations. Moreover, the application of an entropy principle becomes more straightforward and finally helps estimate the limitations of the more general approach based the full set of Maxwell equations. Constitutive relations are provided based on an entropy principle, and particular care is taken in the analysis of the stress tensor and the momentum balance in the general case of non-constant scalar susceptibility. Finally, we summarise the application of the derived model framework to an electrochemical system with surface reactions.
  • Item
    Feedback Loops in Opinion Dynamics of Agent-Based Models with Multiplicative Noise
    (Basel : MDPI, 2022) Djurdjevac Conrad, Nataša; Köppl, Jonas; Djurdjevac, Ana
    We introduce an agent-based model for co-evolving opinions and social dynamics, under the influence of multiplicative noise. In this model, every agent is characterized by a position in a social space and a continuous opinion state variable. Agents’ movements are governed by the positions and opinions of other agents and similarly, the opinion dynamics are influenced by agents’ spatial proximity and their opinion similarity. Using numerical simulations and formal analyses, we study this feedback loop between opinion dynamics and the mobility of agents in a social space. We investigate the behaviour of this ABM in different regimes and explore the influence of various factors on the appearance of emerging phenomena such as group formation and opinion consensus. We study the empirical distribution, and, in the limit of infinite number of agents, we derive a corresponding reduced model given by a partial differential equation (PDE). Finally, using numerical examples, we show that a resulting PDE model is a good approximation of the original ABM.
  • Item
    Ice-Crystal Nucleation in Water: Thermodynamic Driving Force and Surface Tension. Part I: Theoretical Foundation
    (Basel : MDPI, 2020) Hellmuth, Olaf; Schmelzer, Jürn W.P.; Feistel, Rainer
    A recently developed thermodynamic theory for the determination of the driving force of crystallization and the crystal–melt surface tension is applied to the ice-water system employing the new Thermodynamic Equation of Seawater TEOS-10. The deviations of approximative formulations of the driving force and the surface tension from the exact reference properties are quantified, showing that the proposed simplifications are applicable for low to moderate undercooling and pressure differences to the respective equilibrium state of water. The TEOS-10-based predictions of the ice crystallization rate revealed pressure-induced deceleration of ice nucleation with an increasing pressure, and acceleration of ice nucleation by pressure decrease. This result is in, at least, qualitative agreement with laboratory experiments and computer simulations. Both the temperature and pressure dependencies of the ice-water surface tension were found to be in line with the le Chatelier–Braun principle, in that the surface tension decreases upon increasing degree of metastability of water (by decreasing temperature and pressure), which favors nucleation to move the system back to a stable state. The reason for this behavior is discussed. Finally, the Kauzmann temperature of the ice-water system was found to amount TK=116K , which is far below the temperature of homogeneous freezing. The Kauzmann pressure was found to amount to pK=−212MPa , suggesting favor of homogeneous freezing on exerting a negative pressure on the liquid. In terms of thermodynamic properties entering the theory, the reason for the negative Kauzmann pressure is the higher mass density of water in comparison to ice at the melting point.
  • Item
    Stability of Weak Solutions to Parabolic Problems with Nonstandard Growth and Cross–Diffusion
    (Basel : MDPI, 2021) Erhardt, André H.
    We study the stability of a unique weak solution to certain parabolic systems with nonstandard growth condition, which are additionally dependent on a cross-diffusion term. More precisely, we show that two unique weak solutions of the considered system with different initial values are controlled by their initial values.
  • Item
    Entropy Determination of Single-Phase High Entropy Alloys with Different Crystal Structures over a Wide Temperature Range
    (Basel : MDPI, 2018-8-30) Haas, Sebastian; Mosbacher, Mike; Senkov, Oleg N; Feuerbacher, Michael; Freudenberger, Jens; Gezgin, Senol; Völkl, Rainer; Glatzel, Uwe
    We determined the entropy of high entropy alloys by investigating single-crystalline nickel and five high entropy alloys: two fcc-alloys, two bcc-alloys and one hcp-alloy. Since the configurational entropy of these single-phase alloys differs from alloys using a base element, it is important to quantify the entropy. Using differential scanning calorimetry, cp-measurements are carried out from −170 °C to the materials’ solidus temperatures TS. From these experiments, we determined the thermal entropy and compared it to the configurational entropy for each of the studied alloys. We applied the rule of mixture to predict molar heat capacities of the alloys at room temperature, which were in good agreement with the Dulong-Petit law. The molar heat capacity of the studied alloys was about three times the universal gas constant, hence the thermal entropy was the major contribution to total entropy. The configurational entropy, due to the chemical composition and number of components, contributes less on the absolute scale. Thermal entropy has approximately equal values for all alloys tested by DSC, while the crystal structure shows a small effect in their order. Finally, the contributions of entropy and enthalpy to the Gibbs free energy was calculated and examined and it was found that the stabilization of the solid solution phase in high entropy alloys was mostly caused by increased configurational entropy.
  • Item
    Bulk-Surface Electrothermodynamics and Applications to Electrochemistry
    (Basel : MDPI, 2018) Dreyer, Wolfgang; Guhlke, Clemens; Müller, Rüdiger
    We propose a modeling framework for magnetizable, polarizable, elastic, viscous, heat conducting, reactive mixtures in contact with interfaces. To this end, we first introduce bulk and surface balance equations that contain several constitutive quantities. For further modeling of the constitutive quantities, we formulate constitutive principles. They are based on an axiomatic introduction of the entropy principle and the postulation of Galilean symmetry. We apply the proposed formalism to derive constitutive relations in a rather abstract setting. For illustration of the developed procedure, we state an explicit isothermal material model for liquid electrolyte|metal electrode interfaces in terms of free energy densities in the bulk and on the surface. Finally, we give a survey of recent advancements in the understanding of electrochemical interfaces that were based on this model.