Search Results

Now showing 1 - 4 of 4
  • Item
    Differentiability Properties for Boundary Control of Fluid-Structure Interactions of Linear Elasticity with Navier-Stokes Equations with Mixed-Boundary Conditions in a Channel
    (New York, NY : Springer, 2023) Hintermüller, Michael; Kröner, Axel
    In this paper we consider a fluid-structure interaction problem given by the steady Navier Stokes equations coupled with linear elasticity taken from (Lasiecka et al. in Nonlinear Anal 44:54–85, 2018). An elastic body surrounded by a liquid in a rectangular domain is deformed by the flow which can be controlled by the Dirichlet boundary condition at the inlet. On the walls along the channel homogeneous Dirichlet boundary conditions and on the outflow boundary do-nothing conditions are prescribed. We recall existence results for the nonlinear system from that reference and analyze the control to state mapping generalizing the results of (Wollner and Wick in J Math Fluid Mech 21:34, 2019) to the setting of the nonlinear Navier-Stokes equation for the fluid and the situation of mixed boundary conditions in a domain with corners.
  • Item
    From Large Deviations to Semidistances of Transport and Mixing: Coherence Analysis for Finite Lagrangian Data
    (New York, NY : Springer, 2018) Koltai, Péter; Renger, D.R. Michiel
    One way to analyze complicated non-autonomous flows is through trying to understand their transport behavior. In a quantitative, set-oriented approach to transport and mixing, finite time coherent sets play an important role. These are time-parametrized families of sets with unlikely transport to and from their surroundings under small or vanishing random perturbations of the dynamics. Here we propose, as a measure of transport and mixing for purely advective (i.e., deterministic) flows, (semi)distances that arise under vanishing perturbations in the sense of large deviations. Analogously, for given finite Lagrangian trajectory data we derive a discrete-time-and-space semidistance that comes from the “best” approximation of the randomly perturbed process conditioned on this limited information of the deterministic flow. It can be computed as shortest path in a graph with time-dependent weights. Furthermore, we argue that coherent sets are regions of maximal farness in terms of transport and mixing, and hence they occur as extremal regions on a spanning structure of the state space under this semidistance—in fact, under any distance measure arising from the physical notion of transport. Based on this notion, we develop a tool to analyze the state space (or the finite trajectory data at hand) and identify coherent regions. We validate our approach on idealized prototypical examples and well-studied standard cases.
  • Item
    Convergence Rates of First- and Higher-Order Dynamics for Solving Linear Ill-Posed Problems
    (New York, NY : Springer, 2021) Boţ, Radu; Dong, Guozhi; Elbau, Peter; Scherzer, Otmar
    Recently, there has been a great interest in analysing dynamical flows, where the stationary limit is the minimiser of a convex energy. Particular flows of great interest have been continuous limits of Nesterov’s algorithm and the fast iterative shrinkage-thresholding algorithm, respectively. In this paper, we approach the solutions of linear ill-posed problems by dynamical flows. Because the squared norm of the residual of a linear operator equation is a convex functional, the theoretical results from convex analysis for energy minimising flows are applicable. However, in the restricted situation of this paper they can often be significantly improved. Moreover, since we show that the proposed flows for minimising the norm of the residual of a linear operator equation are optimal regularisation methods and that they provide optimal convergence rates for the regularised solutions, the given rates can be considered the benchmarks for further studies in convex analysis.
  • Item
    Eikonal equations and pathwise solutions to fully non-linear SPDEs
    (New York, NY : Springer, 2016) Friz, Peter K.; Gassiat, Paul; Lions, Pierre-Louis; Souganidis, Panagiotis E.
    We study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear, possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Riemannian geometry. The results are new and extend the class of equations studied so far by the last two authors.