Search Results

Now showing 1 - 2 of 2
  • Item
    Beyond just “flattening the curve”: Optimal control of epidemics with purely non-pharmaceutical interventions
    (Berlin ; Heidelberg : Springer, 2020) Kantner, Markus; Koprucki, Thomas
    When effective medical treatment and vaccination are not available, non-pharmaceutical interventions such as social distancing, home quarantine and far-reaching shutdown of public life are the only available strategies to prevent the spread of epidemics. Based on an extended SEIR (susceptible-exposed-infectious-recovered) model and continuous-time optimal control theory, we compute the optimal non-pharmaceutical intervention strategy for the case that a vaccine is never found and complete containment (eradication of the epidemic) is impossible. In this case, the optimal control must meet competing requirements: First, the minimization of disease-related deaths, and, second, the establishment of a sufficient degree of natural immunity at the end of the measures, in order to exclude a second wave. Moreover, the socio-economic costs of the intervention shall be kept at a minimum. The numerically computed optimal control strategy is a single-intervention scenario that goes beyond heuristically motivated interventions and simple “flattening of the curve”. Careful analysis of the computed control strategy reveals, however, that the obtained solution is in fact a tightrope walk close to the stability boundary of the system, where socio-economic costs and the risk of a new outbreak must be constantly balanced against one another. The model system is calibrated to reproduce the initial exponential growth phase of the COVID-19 pandemic in Germany. © 2020, The Author(s).
  • Item
    Modelling and simulation of flame cutting for steel plates with solid phases and melting
    (Berlin ; Heidelberg : Springer, 2020) Arenas, Manuel J.; Hömberg, Dietmar; Lasarzik, Robert; Mikkonen, Pertti; Petzold, Thomas
    The goal of this work is to describe in detail a quasi-stationary state model which can be used to deeply understand the distribution of the heat in a steel plate and the changes in the solid phases of the steel and into liquid phase during the flame cutting process. We use a 3D-model similar to previous works from Thiébaud (J. Mater. Process. Technol. 214(2):304–310, 2014) and expand it to consider phases changes, in particular, austenite formation and melting of material. Experimental data is used to validate the model and study its capabilities. Parameters defining the shape of the volumetric heat source and the power density are calibrated to achieve good agreement with temperature measurements. Similarities and differences with other models from literature are discussed. © 2020, The Author(s).