Search Results

Now showing 1 - 7 of 7
  • Item
    EDP-convergence for a linear reaction-diffusion system with fast reversible reaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Stephan, Artur
    We perform a fast-reaction limit for a linear reaction-diffusion system consisting of two diffusion equations coupled by a linear reaction. We understand the linear reaction-diffusion system as a gradient flow of the free energy in the space of probability measures equipped with a geometric structure, which contains the Wasserstein metric for the diffusion part and cosh-type functions for the reaction part. The fast-reaction limit is done on the level of the gradient structure by proving EDP-convergence with tilting. The limit gradient system induces a diffusion system with Lagrange multipliers on the linear slow-manifold. Moreover, the limit gradient system can be equivalently described by a coarse-grained gradient system, which induces a diffusion equation with a mixed diffusion constant for the coarse-grained slow variable.
  • Item
    On the evolutionary Gamma-convergence of gradient systems modeling slow and fast chemical reactions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Disser, Karoline; Liero, Matthias; Zinsl, Jonathan
    We investigate the limit passage for a system of ordinary differential equations modeling slow and fast chemical reaction of mass-action type, where the rates of fast reactions tend to infinity. We give an elementary proof of convergence to a reduced dynamical system acting in the slow reaction directions on the manifold of fast reaction equilibria. Then we study the entropic gradient structure of these systems and prove an E-convergence result via Gamma-convergence of the primary and dual dissipation potentials, which shows that this structure carries over to the fast reaction limit. We recover the limit dynamics as a gradient flow of the entropy with respect to a pseudo-metric.
  • Item
    An evolutionary elastoplastic plate model derived via Gamma-convergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Liero, Matthias; Mielke, Alexander
    This paper is devoted to dimension reduction for linearized elastoplasticity in the rate-independent case. The reference configuration of the three-dimensional elastoplastic body has a two-dimensional middle surface and a positive but small thickness. Under suitable scalings we derive a limiting model for the case in which the thickness of the plate tends to 0. This model contains membrane and plate deformations (linear Kirchhoff--Love plate), which are coupled via plastic strains. We establish strong convergence of the solutions in the natural energy space. The analysis uses an abstract Gamma-convergence theory for rate-independent evolutionary systems that is based on the notion of energetic solutions. This concept is formulated via an energy-storage functional and a dissipation functional, such that energetic solutions are defined in terms of a stability condition and an energy balance. The Mosco convergence of the quadratic energy-storage functional follows the arguments of the elastic case. To handle the evolutionary situation the interplay with the dissipation functional is controlled by cancellation properties for Mosco-convergent quadratic energies
  • Item
    Derivation of an effective damage model with evolving micro-structure
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Hanke, Hauke; Knees, Dorothee
    In this paper rate-independent damage models for elastic materials are considered. The aim is the derivation of an effective damage model by investigating the limit process of damage models with evolving micro-defects. In all presented models the damage is modeled via a unidirectional change of the material tensor. With progressing time this tensor is only allowed to decrease in the sense of quadratic forms. The magnitude of the damage is given by comparing the actual material tensor with two reference configurations, denoting completely undamaged material and maximally damaged material (no complete damage). The starting point is a microscopic model, where the underlying micro-defects, describing the distribution of either undamaged material or maximally damaged material (but nothing in between), are of a given shape but of different time-dependent sizes. Scaling the micro-structure of this microscopic model by a parameter " > 0 the limit passage " ! 0 is preformed via two-scale convergence techniques. Therefore, a regularization approach for piecewise constant functions is introduced to guarantee enough regularity for identifying the limit model. In the limit model the material tensor depends on a damage variable z : [0, T ] ! W1,p( ) taking values between 0 and 1 such that, in contrast to the microscopic model, some kind of intermediate damage for a material point x 2 is possible. Moreover, this damage variable is connected to the material tensor via an explicit formula, namely, a unit cell formula known from classical homogenization results
  • Item
    A mathematical framework for standard generalized materials in the rate-independent case
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Mielke, Alexander
    Standard generalized materials are described by an elastic energy density and a dissipation potential. The latter gives rise to the evolution equation (flow law) for the internal variables. The energetic formulation provides a very weak, derivative-free form of this flow law. It is based on a global stability condition and an energy balance. Using time-incremental minimization problems, which allow for the usage of the rich theory in the direct method of the calculus of variations, it is possible to establish general, abstract existence results as well as convergence for numerical approximations. Applications to shape-memory materials and to magnetostrictive or piezoelectric materials are surveyed.
  • Item
    Rate-independent elastoplasticity at finite strains and its numerical approximation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Mielke, Alexander; Roubíc̆ek, Tomáš
    Gradient plasticity at large strains with kinematic hardening is analyzed as quasistatic rate-independent evolution. The energy functional with a frame-indifferent polyconvex energy density and the dissipation are approximated numerically by finite elements and implicit time discretization, such that a computationally implementable scheme is obtained. The non-selfpenetration as well as a possible frictionless unilateral contact is considered and approximated numerically by a suitable penalization method which keeps polyconvexity and simultaneously by-passes the Lavrentiev phenomenon. The main result concerns the convergence of the numerical scheme towards energetic solutions. In the case of incompressible plasticity and of nonsimple materials, where the energy depends on the second derivative of the deformation, we derive an explicit stability criterion for convergence relating the spatial discretization and the penalizations.
  • Item
    EDP-convergence for nonlinear fast-slow reaction systems with detailed balance
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Mielke, Alexander; Peletier, Mark A.; Stephan, Artur
    We consider nonlinear reaction systems satisfying mass-action kinetics with slow and fast reactions. It is known that the fast-reaction-rate limit can be described by an ODE with Lagrange multipliers and a set of nonlinear constraints that ask the fast reactions to be in equilibrium. Our aim is to study the limiting gradient structure which is available if the reaction system satisfies the detailed-balance condition. The gradient structure on the set of concentration vectors is given in terms of the relative Boltzmann entropy and a cosh-type dissipation potential. We show that a limiting or effective gradient structure can be rigorously derived via EDP convergence, i.e. convergence in the sense of the Energy-Dissipation Principle for gradient flows. In general, the effective entropy will no longer be of Boltzmann type and the reactions will no longer satisfy mass-action kinetics.