Search Results

Now showing 1 - 3 of 3
  • Item
    Solving conical diffraction with integral equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Goray, Leonid I.; Schmidt, Gunther
    Off-plane scattering of time-harmonic plane waves by a diffraction grating with arbitrary conductivity and general border profile is considered in a rigorous electromagnetic formulation. The integral equations for conical diffraction were obtained using the boundary integrals of the single and double layer potentials including the tangential derivative of single layer potentials interpreted as singular integrals. We derive an important formula for the calculation of the absorption in conical diffraction. Some rules which are expedient for the numerical implementation of the theory are presented. The efficiencies and polarization angles compared with those obtained by Lifeng Li for transmission and reflection gratings are in a good agreement. The code developed and tested is found to be accurate and efficient for solving off-plane diffraction problems including high-conductive surfaces, borders with edges, real border profiles, and gratings working at short wavelengths.
  • Item
    Integral equations for conical diffraction by coated gratings
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Schmidt, Gunther
    The paper is devoted to integral formulations for the scattering of plane waves by diffraction gratings under oblique incidence. For the case of coated gratings Maxwell's equations can be reduced to a system of four singular integral equations on the piecewise smooth interfaces between different materials. We study analytic properties of the integral operators for periodic diffraction problems and obtain existence and uniqueness results for solutions of the systems corresponding to electromagnetic fields with locally finite energy.
  • Item
    Integral methods for conical diffraction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Schmidt, Gunther
    The paper is devoted to the scattering of a plane wave obliquely illuminating a periodic surface. Integral equation methods lead to a system of singular integral equations over the profile. Using boundary integral techniques we study the equivalence of these equations to the electromagnetic formulation, the existence and uniqueness of solutions under general assumptions on the permittivity and permeability of the materials. In particular, new results for materials with negative permittivity or permeability are established.