Search Results

Now showing 1 - 5 of 5
  • Item
    Two-scale topology optimization with heterogeneous mesostructures based on a local volume constraint
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Ebeling-Rump, Moritz; Hömberg, Dietmar; Lasarzik, Robert
    A new approach to produce optimal porous mesostructures and at the same time optimizing the macro structure subject to a compliance cost functional is presented. It is based on a phase-field formulation of topology optimization and uses a local volume constraint (LVC). The main novelty is that the radius of the LVC may depend both on space and a local stress measure. This allows for creating optimal topologies with heterogeneous mesostructures enforcing any desired spatial grading and accommodating stress concentrations by stress dependent pore size. The resulting optimal control problem is analysed mathematically, numerical results show its versatility in creating optimal macroscopic designs with tailored mesostructures.
  • Item
    Additive manufacturing graded-material design based on phase-field and topology optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Carraturo, Massimo; Rocca, Elisabetta; Bonetti, Elena; Hömberg, Dietmar; Reali, Alessandro; Auricchio, Ferdinando
    In the present work we introduce a novel graded-material design for additive manufacturing based on phase-field and topology optimization. The main novelty of this work comes from the introduction of an additional phase-field variable in the classical single-material phase-field topology optimization algorithm. This new variable is used to grade the material properties in a continuous fashion. Two different numerical examples are discussed, in both of them we perform sensitivity studies to asses the effects of different model parameters onto the resulting structure. From the presented results we can observe that the proposed algorithm adds additional freedom in the design, exploiting the higher flexibility coming from additive manufacturing technology.
  • Item
    Topology optimization subject to additive manufacturing constraints
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Ebeling-Rump, Moritz; Hömberg, Dietmar; Lasarzik, Robert; Petzold, Thomas
    In Topology Optimization the goal is to find the ideal material distribution in a domain subject to external forces. The structure is optimal if it has the highest possible stiffness. A volume constraint ensures filigree structures, which are regulated via a Ginzburg-Landau term. During 3D Printing overhangs lead to instabilities, which have only been tackled unsatisfactorily. The novel idea is to incorporate an Additive Manufacturing Constraint into the phase field method. A rigorous analysis proves the existence of a solution and leads to first order necessary optimality conditions. With an Allen-Cahn interface propagation the optimization problem is solved iteratively. At a low computational cost the Additive Manufacturing Constraint brings about support structures, which can be fine tuned according to engineering demands. Stability during 3D Printing is assured, which solves a common Additive Manufacturing problem.
  • Item
    Design and testing of 3D-printed micro-architectured polymer materials exhibiting a negative Poisson's ratio
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Agnelli, Filippo; Constantinescu, Andrei; Nika, Grigor
    This work proposes the complete design cycle for several auxetic materials where the cycle consists of three steps (i) the design of the micro-architecture, (ii) the manufacturing of the material and (iii) the testing of the material. In more precise terms, we aim to obtain domain micro-architectured materials with a prescribed elasticity tensor and Poisson's ratio. In order to reach this goal we use topology optimization via the level set method for the material design process. Specimens are manufactured using a commercial stereo-lithography Ember printer and mechanically tested. The observed displacement and strain fields during tensile testing obtained by digital image correlation match the predictions from the FE simulation.
  • Item
    Optimization of a multiphysics problem in semiconductor laser design
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Adam, Lukáš; Hintermüller, Michael; Peschka, Dirk; Surowiec, Thomas M.
    A @multimaterial topology optimization framework is suggested for the simultaneous optimization of mechanical and optical properties to be used in the development of optoelectronic devices. Based on the physical aspects of the underlying device, a nonlinear multiphysics model for the elastic and optical properties is proposed. Rigorous proofs are provided for the sensitivity of the fundamental mode of the device with respect to the changes in the underlying topology. After proving existence and optimality results, numerical experiments leading to an optimal material distribution for maximizing the strain in a Ge-on-Si microbridge are given. The highly favorable electronic properties of this design are demonstrated by steady-state simulations of the corresponding van Roosbroeck (drift-diffusion) system.