Search Results

Now showing 1 - 2 of 2
  • Item
    Active Plasmonic Colloid-to-Film-Coupled Cavities for Tailored Light-Matter Interactions
    (Washington, DC : Soc., 2019) Goßler, Fabian R.; Steiner, Anja Maria; Stroyuk, Oleksandr; Raevskaya, Alexandra; König, Tobias A.F.
    For large-scale fabrication of optical circuits, tailored subwavelength structures are required to modulate the refractive index. Here, we introduce a colloid-to-film-coupled nanocavity whose refractive index can be tailored by various materials, shapes, and cavity volumes. With this colloidal nanocavity setup, the refractive index can be adjusted over a wide visible wavelength range. For many nanophotonic applications, specific values for the extinction coefficient are crucial to achieve optical loss and gain. We employed bottom-up self-assembly techniques to sandwich optically active ternary metal-chalcogenides between a metallic mirror and plasmonic colloids. The spectral overlap between the cavity resonance and the broadband emitter makes it possible to study the tunable radiative properties statistically. For flat cavity geometries of silver nanocubes with sub-10 nm metallic gap, we found a fluorescence enhancement factor beyond 1000 for 100 cavities and a 112 meV Rabi splitting. In addition, we used gold spheres to extend the refractive index range. By this easily scalable colloidal nanocavity setup, gain and loss building blocks are now available, thereby leading to new generation of optical devices. Copyright © 2019 American Chemical Society.
  • Item
    Revealing Fast Proton Transport in Condensed Matter by Means of Density Scaling Concept
    (Washington, DC : Soc., 2020) Wojnarowska, Zaneta; Musiał, Małgorzata; Cheng, Shinian; Gapinski, Jacek; Patkowski, Adam; Pionteck, Jürgen; Paluch, Marian
    Herein, we investigate the charge transport and structural dynamics in the supercooled and glassy state of protic ionic material with an efficient interionic Grotthuss mechanism. We found that superprotonic properties of studied acebutolol hydrochloride (ACB-HCl) depend on thermodynamic conditions with the most favorable regions being close to the glass-transition temperature (Tg) and glass-transition pressure (Pg). To quantify the contribution of fast proton hopping to overall charge transport over a broad T–P space, we employed the density scaling concept, one of the most important experimental findings in the field of condensed matter physics. We found that isothermal and isobaric dc-conductivity (σdc) and dynamic light scattering (τα) data of ACB-HCl plotted as a function of (TVγ)−1 satisfy the thermodynamic scaling criterion with the ratio γσ/γα appearing as a new measure of fast charge transport in protic ionic glass-formers in the T–P plane. Such a universal factor becomes an alternative to the well-known Walden rule being limited to ambient pressure conditions.