Search Results

Now showing 1 - 5 of 5
  • Item
    Cell-Instructive Multiphasic Gel-in-Gel Materials
    (Weinheim : Wiley-VCH, 2020) Kühn, Sebastian; Sievers, Jana; Stoppa, Aukha; Träber, Nicole; Zimmermann, Ralf; Welzel, Petra B.; Werner, Carsten
    Developing tissue is typically soft, highly hydrated, dynamic, and increasingly heterogeneous matter. Recapitulating such characteristics in engineered cell-instructive materials holds the promise of maximizing the options to direct tissue formation. Accordingly, progress in the design of multiphasic hydrogel materials is expected to expand the therapeutic capabilities of tissue engineering approaches and the relevance of human 3D in vitro tissue and disease models. Recently pioneered methodologies allow for the creation of multiphasic hydrogel systems suitable to template and guide the dynamic formation of tissue- and organ-specific structures across scales, in vitro and in vivo. The related approaches include the assembly of distinct gel phases, the embedding of gels in other gel materials and the patterning of preformed gel materials. Herein, the capabilities and limitations of the respective methods are summarized and discussed and their potential is highlighted with some selected examples of the recent literature. As the modularity of the related methodologies facilitates combinatorial and individualized solutions, it is envisioned that multiphasic gel-in-gel materials will become a versatile morphogenetic toolbox expanding the scope and the power of bioengineering technologies. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Nanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysis
    (Weinheim : Wiley-VCH, 2021) Gupta, Vaibhav; Sarkar, Swagato; Aftenieva, Olha; Tsuda, Takuya; Kumar, Labeesh; Schletz, Daniel; Schultz, Johannes; Kiriy, Anton; Fery, Andreas; Vogel, Nicolas; König, Tobias A.F.
    Imprint lithography has emerged as a reliable, reproducible, and rapid method for patterning colloidal nanostructures. As a promising alternative to top-down lithographic approaches, the fabrication of nanodevices has thus become effective and straightforward. In this study, a fusion of interference lithography (IL) and nanosphere imprint lithography on various target substrates ranging from carbon film on transmission electron microscope grid to inorganic and dopable polymer semiconductor is reported. 1D plasmonic photonic crystals are printed with 75% yield on the centimeter scale using colloidal ink and an IL-produced polydimethylsiloxane stamp. Atomically smooth facet, single-crystalline, and monodisperse colloidal building blocks of gold (Au) nanoparticles are used to print 1D plasmonic grating on top of a titanium dioxide (TiO2) slab waveguide, producing waveguide-plasmon polariton modes with superior 10 nm spectral line-width. Plasmon-induced hot electrons are confirmed via two-terminal current measurements with increased photoresponsivity under guiding conditions. The fabricated hybrid structure with Au/TiO2 heterojunction enhances photocatalytic processes like degradation of methyl orange (MO) dye molecules using the generated hot electrons. This simple colloidal printing technique demonstrated on silicon, glass, Au film, and naphthalenediimide polymer thus marks an important milestone for large-scale implementation in optoelectronic devices. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Tuning the Local Availability of VEGF within Glycosaminoglycan-Based Hydrogels to Modulate Vascular Endothelial Cell Morphogenesis
    (Weinheim : Wiley-VCH, 2020) Limasale, Yanuar Dwi Putra; Atallah, Passant; Werner, Carsten; Freudenberg, Uwe; Zimmermann, Ralf
    Incorporation of sulfated glycosaminoglycans (GAGs) into cell-instructive polymer networks is shown to be instrumental in controlling the diffusivity and activity of growth factors. However, a subtle balance between local retention and release of the factors is needed to effectively direct cell fate decisions. To quantitatively unravel material characteristics governing these key features, the GAG content and the GAG sulfation pattern of star-shaped poly(ethylene glycol) (starPEG)–GAG hydrogels are herein tuned to control the local availability and bioactivity of GAG-affine vascular endothelial growth factor (VEGF165). Hydrogels containing varying concentrations of heparin or heparin derivatives with different sulfation pattern are prepared and thoroughly characterized for swelling, mechanical properties, and growth factor transport. Mathematical models are developed to predict the local concentration and spatial distribution of free and bound VEGF165 within the gel matrices. The results of simulation and experimental studies concordantly reveal how the GAG concentration and sulfation pattern determine the local availability of VEGF165 within the cell-instructive hydrogels and how the factor—in interplay with cell-instructive gel properties—determines the formation and spatial organization of capillary networks of embedded human vascular endothelial cells. Taken together, this study exemplifies how mathematical modeling and rational hydrogel design can be combined to pave the way for precision tissue engineering. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Self-Replication of Deeply Buried Doped Silicon Structures, which Remotely Control the Etching Process: A New Method for Forming a Silicon Pattern from the Bottom Up
    (Weinheim : Wiley-VCH, 2021) Schutzeichel, Christopher; Kiriy, Nataliya; Kiriy, Anton; Voit, Brigitte
    A typical microstructuring process utilizes photolithographic masks to create arbitrary patterns on silicon substrates in a top-down approach. Herein, a new, bottom-up microstructuring method is reported, which enables the patterning of n-doped silicon substrates to be performed without the need for application of etch-masks or stencils during the etching process. Instead, the structuring process developed herein involves a simple alkaline etching performed under illumination and is remotely controlled by the p-doped micro-sized implants, buried beneath a homogeneous n-doped layer at depths of 0.25 to 1 µm. The microstructuring is realized because the buried implants act upon illumination as micro-sized photovoltaic cells, which generate a flux of electrons and increase the negative surface charge in areas above the implants. The locally increased surface charge causes a local protection of the native silicon oxide layer from alkaline etching, which ultimately leads to the microstructuring of the substrate. In this way, substrates having at their top a thick layer of homogeneously n-doped silicon can be structured, reducing the need for costly, time-consuming photolithography steps. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Polymer Hydrogels to Guide Organotypic and Organoid Cultures
    (Weinheim : Wiley-VCH, 2020) Magno, Valentina; Meinhardt, Andrea; Werner, Carsten
    Human organotypic and organoid cultures provide increasingly life-like models of tissue/organ development and disease, enable more realistic drug screening, and may ultimately pave the way for new therapies. A broad variety of extracellular matrix-based or inspired materials is instrumental in these approaches. In this review article, the foundations of the related materials design are summarized with an emphasis on the advantages and limitations of decellularized and reconstituted biopolymeric matrices as well as biohybrid and fully synthetic polymer hydrogel systems applied to enable specific organotypic and organoid cultures. Recent progress in the fabrication of defined hydrogel systems offering thoroughly tunable biochemical and biophysical properties is highlighted. Potentialities of hydrogel-based approaches to address the persisting challenges of organoid technologies, namely scalability, connectivity/integration, reproducibility, parallelization, and in situ monitoring are discussed. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim