Search Results

Now showing 1 - 2 of 2
  • Item
    Zebrafish larvae as a toxicity model in plasma medicine
    (Hoboken, NJ : Wiley Interscience, 2021) Gandhirajan, Rajesh K.; Endlich, Nicole; Bekeschus, Sander
    Plasma technology has emerged as a promising tool in medicine that, however, requires not only efficacy but also toxicological assessments. Traditional cell culture systems are fast and economical, but they lack in vivo relevance; however, rodent models are highly complex and necessitate extended facilities. Zebrafish larvae bridge this gap, and many larvae can be analyzed in well plates in a single run, giving results in 1–2 days. Using the kINPen, we found plasma exposure to reduce hedging rates and viability in a dose-dependent manner, accompanied with an increase in reactive oxygen species and a decrease of glutathione in plasma-treated fish. Modest growth alterations were also observed. Altogether, zebrafish larvae constitute a fast, reliable, and relevant model for testing the toxicity of plasma sources.
  • Item
    A novel Deal–Grove-inspired model for fluorine-based plasma jet etching of borosilicate crown optical glass
    (Hoboken, NJ : Wiley Interscience, 2021) Kazemi, Faezeh; Boehm, Georg; Arnold, Thomas
    The Deal–Grove model is a state-of-the-art approach proposed for describing the thermal oxidation of silicon and the oxide thickness over time. In this study, the Deal–Grove concept provided the inspiration for a mathematical model for simulating plasma jet-based dry etching process of borosilicate crown glass (N-BK7®). The whole process is contained in two so-called Deal–Grove parameters, which are extracted from experimental data including local etching depth and surface temperature distribution. The proposed model is extended for the evolution of dynamic etch profiles, and the obtained results are validated experimentally. By establishing such a model, it is possible to predict the effect of the residual layer and surface temperature on the evolution of local etching depths over dwell time.