Search Results

Now showing 1 - 4 of 4
  • Item
    Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes
    (London [u.a.] : RSC, 2016) Tolosa, Aura; Krüner, Benjamin; Fleischmann, Simon; Jäckel, Nicolas; Zeiger, Marco; Aslan, Mesut; Grobelsek, Ingrid; Presser, Volker
    This study presents electrospun niobium carbide/carbon (NbC/C) hybrid nanofibers, with an average diameter of 69 ± 30 nm, as a facile precursor to derive either highly nanoporous niobium carbide-derived carbon (NbC–CDC) fibers for supercapacitor applications or niobium pentoxide/carbon (Nb2O5/C) hybrid fibers for battery-like energy storage. In all cases, the electrodes consist of binder-free and free-standing nanofiber mats that can be used without further conductive additives. Chlorine gas treatment conformally transforms NbC nanofiber mats into NbC–CDC fibers with a specific surface area of 1508 m2 g−1. These nanofibers show a maximum specific energy of 19.5 W h kg−1 at low power and 7.6 W h kg−1 at a high specific power of 30 kW kg−1 in an organic electrolyte. CO2 treatment transforms NbC into T-Nb2O5/C hybrid nanofiber mats that provide a maximum capacity of 156 mA h g−1. The presence of graphitic carbon in the hybrid nanofibers enabled high power handling, maintaining 50% of the initial energy storage capacity at a high rate of 10 A g−1 (64 C-rate). When benchmarked for an asymmetric full-cell, a maximum specific energy of 86 W h kg−1 was obtained. The high specific power for both systems, NbC–CDC and T-Nb2O5/C, resulted from the excellent charge propagation in the continuous nanofiber network and the high graphitization of the carbon structure.
  • Item
    Correction: Electrochemically deposited nanocrystalline InSb thin films and their electrical properties (Journal of Materials Chemistry C (2016) 4 (1345-1350) DOI: 10.1039/C5TC03656A)
    (London : RSC Publ., 2019) Hnida, K.E.; Bäßler, S.; Mech, J.; Szaciłowski, K.; Socha, R.P.; Gajewska, M.; Nielsch, K.; Przybylski, M.; Sulka, G.D.
    There was an error in eqn (3) which was reproduced from the literature and used for the interpretation of the results. The calculations (using the equations from an original work from 1987) were done according the correct version of eqn (3) presented below:. (Table Presented). © 2019 The Royal Society of Chemistry.
  • Item
    TiNb2O7 and VNB9O25 of ReO3 type in hybrid Mg−Li batteries: Electrochemical and interfacial insights
    (Washington, DC : American Chemical Society, 2020) Maletti, Sebastian; Herzog-Arbeitman, Abraham; Oswald, Steffen; Senyshyn, Anatoliy; Giebeler, Lars; Mikhailova, Daria
    As one of the beyond-lithium battery concepts, hybrid metal-ion batteries have aroused growing interest. Here, TiNb2O7 (TNO) and VNb9O25 (VNO) materials were prepared using a high-temperature solid-state synthesis and, for the first time, comprehensively examined in hybrid Mg−Li batteries. Both materials adopt ReO3-related structures differing in the interconnection of oxygen polyhedra and the resulting guest ion diffusion paths. We show applicability of the compounds in hybrid cells providing capacities comparable to those reached in Li-ion batteries (LIBs) at room temperature (220 mAh g−1 for TNO and 150 mAh g−1 for VNO, both at 0.1 C), their operability in the temperature range between −10 and 60 °C, and even better capacity retention than in pure LIBs, rendering this hybrid technology superior for long-term application. Post mortem X-ray photoelectron spectroscopy reveals a cathode−electrolyte interface as a key ingredient for providing excellent electrochemical stability of the hybrid battery. A significant contribution of the intercalation pseudocapacitance to charge storage was observed for both materials in Li- and Mg−Li batteries. However, the pseudocapacitive part is higher for TNO than for VNO, which correlates with structural distinctions, providing better accessibility of diffusion pathways for guest cations in TNO and, as a consequence, a higher ionic transport within the crystal structure. © 2020 American Chemical Society
  • Item
    Polysulfide driven degradation in lithium–sulfur batteries during cycling – quantitative and high time-resolution operando X-ray absorption study for dissolved polysulfides probed at both electrode sides
    (London [u.a.] : RSC, 2021) Zech, Claudia; Hönicke, Philipp; Kayser, Yves; Risse, Sebastian; Grätz, Olga; Stamm, Manfred; Beckhoff, Burkhard
    The development of operando characterization techniques on realistic batteries is essential for an advanced mechanistic understanding in battery chemistry and, therefore, contributes to their further performance improvement. This manuscript presents operando Near-Edge X-ray Absorption Spectroscopy (NEXAFS) traceable to the SI units (SI is the abbreviation for the International System of Units) during multiple charge–discharge cycles on both electrodes of lithium–sulfur (Li/S) coin cells which enables an absolute quantification of dissolved polysulfides with no need for calibration samples or reference material. We could reveal that during the charging process, polysulfide (PS) movement from the negative to the positive electrode is inhibited. This leads to a steady increase of dissolved polysulfides at the anode side and, therefore, is one of the key points for capacity fading. We quantitatively track the polysulfides dissolved in the electrolyte and correlate for the first time their evolution with the capacity fading of the cell. We analyze the appearance of PS during cell operation at the cathode and anode side to characterize the transport mechanisms of the polysulfide shuttle phenomena and to reveal quantitative information about their evolution at different states of charge and states of health. Our cell design suppresses the contribution of cathodic sulfur, which is mandatory for reference-sample-free quantification in X-ray spectrometry and allows us to use only slightly modified standard coin cell batteries.