Search Results

Now showing 1 - 4 of 4
  • Item
    Tuning the Volume Phase Transition Temperature of Microgels by Light
    (Weinheim : Wiley-VCH, 2021) Jelken, Joachim; Jung, Se-Hyeong; Lomadze, Nino; Gordievskaya, Yulia D.; Kramarenko, Elena Yu.; Pich, Andrij; Santer, Svetlana
    Temperature-responsive microgels find widespread applications as soft materials for designing actuators in microfluidic systems, as carriers for drug delivery or catalysts, as functional coatings, and as adaptable sensors. The key property is their volume phase transition temperature, which allows for thermally induced reversible swelling/deswelling. It is determined by the gel's chemical structure as well as network topology and cannot be varied easily within one system. Here a paradigm change of this notion by facilitating a light-triggered reversible switching of the microgel volume in the range between 32 and 82 °C is suggested. Photo-sensitivity is introduced by photosensitive azobenzene containing surfactant, which forms a complex with microgels consisting of poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-AAc) chains when assuming a hydrophobic trans-state, and prefers to leave the gel matrix in its cis-state. Using a similar strategy, it is demonstrated that at a fixed temperature, for example, 37 °C, one can reversibly change the microgel radius by a factor of 3 (7–21 µm) by irradiating either with UV (collapsed state) or green light (swollen state). It is envisaged that the possibility to deploy a swift external means of adapting the swelling behavior of microgels may impact and redefine the latter's application across all fields. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Time-resolved structural evolution during the collapse of responsive hydrogels: The microgel-to-particle transition
    (Washington, DC [u.a.] : Assoc., 2018) Keidel, Rico; Ghavami, Ali; Lugo, Dersy M.; Lotze, Gudrun; Virtanen, Otto; Beumers, Peter; Pedersen, Jan Skov; Bardow, Andre; Winkler, Roland G.; Richtering, Walter
    Adaptive hydrogels, often termed smart materials, are macromolecules whose structure adjusts to external stimuli. Responsive micro- and nanogels are particularly interesting because the small length scale enables very fast response times. Chemical cross-links provide topological constraints and define the three-dimensional structure of the microgels, whereas their porous structure permits fast mass transfer, enabling very rapid structural adaption of the microgel to the environment. The change of microgel structure involves a unique transition from a flexible, swollen finite-size macromolecular network, characterized by a fuzzy surface, to a colloidal particle with homogeneous density and a sharp surface. In this contribution, we determine, for the first time, the structural evolution during the microgel-to-particle transition. Time-resolved small-angle x-ray scattering experiments and computer simulations unambiguously reveal a two-stage process: In a first, very fast process, collapsed clusters form at the periphery, leading to an intermediate, hollowish core-shell structure that slowly transforms to a globule. This structural evolution is independent of the type of stimulus and thus applies to instantaneous transitions as in a temperature jump or to slower stimuli that rely on the uptake of active molecules from and/or exchange with the environment. The fast transitions of size and shape provide unique opportunities for various applications as, for example, in uptake and release, catalysis, or sensing.
  • Item
    Impact of Reactive Amphiphilic Copolymers on Mechanical Properties and Cell Responses of Fibrin-Based Hydrogels
    (Weinheim : Wiley-VCH, 2020) Al Enezy-Ulbrich, Miriam Aischa; Malyaran, Hanna; de Lange, Robert Dirk; Labude, Norina; Plum, René; Rütten, Stephan; Terefenko, Nicole; Wein, Svenja; Neuss, Sabine; Pich, Andrij
    Mechanical properties of hydrogels can be modified by the variation of structure and concentration of reactive building blocks. One promising biological source for the synthesis of biocompatible hydrogels is fibrinogen. Fibrinogen is a glycoprotein in blood, which can be transformed enzymatically to fibrin playing an important role in wound healing and clot formation. In the present work, it is demonstrated that hybrid hydrogels with their improved mechanical properties, tunable internal structure, and enhanced resistance to degradation can be synthesized by a combination of fibrinogen and reactive amphiphilic copolymers. Water-soluble amphiphilic copolymers with tunable molecular weight and controlled amounts of reactive epoxy side groups are used as reactive crosslinkers to reinforce fibrin hydrogels. In the present work, copolymers that can influence the mechanical properties of fibrin-based hydrogels are used. The reactive copolymers increase the storage modulus of the hydrogels from 600 Pa to 30 kPa. The thickness of fibrin fibers is regulated by the copolymer concentration. It could be demonstrated that the fibrin-based hydrogels are biocompatible and support cell proliferation. Their degradation rate is considerably slower than that of native fibrin gels. In conclusion, fibrin-based hydrogels with tunable elasticity and fiber thickness useful to direct cell responses like proliferation and differentiation are produced. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Going with the Flow : Tunable Flow-Induced Polymer Mechanochemistry
    (Weinheim : Wiley-VCH, 2020) Willis-Fox, Niamh; Rognin, Etienne; Baumann, Christoph; Aljohani, Talal A.; Göstl, Robert; Daly, Ronan
    Mechanical forces can drive chemical transformations in polymers, directing reactions along otherwise inaccessible pathways, providing exciting possibilities for developing smart, responsive materials. The state-of-the-art test for solution-based polymer mechanochemistry development is ultrasonication. However, this does not accurately model the forces that will be applied during device fabrication using processes such as 3D printing or spray coating. Here, a step is taken toward predictably translating mechanochemistry from molecular design to manufacturing by demonstrating a highly controlled nozzle flow setup in which the shear forces being delivered are precisely tuned. The results show that solvent viscosity, fluid strain rate, and the nature of the breaking bond can be individually studied. Importantly, it is shown that the influence of each is different to that suggested by ultrasonication (altered quantity of chain breakage and critical polymer chain length). Significant development is presented in the understanding of polymer bond breakage during manufacturing flows to help guide design of active components that trigger on demand. Using an anthracene-based mechanophore, the triggering of a fluorescence turn-on is demonstrated through careful selection of the flow parameters. This work opens the avenue for programmed chemical transformations during inline manufacturing processes leading to tunable, heterogeneous final products from a single source material. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim