Search Results

Now showing 1 - 2 of 2
  • Item
    In Situ Observation Reveals Local Detachment Mechanisms and Suction Effects in Micropatterned Adhesives
    (Weinheim : Wiley-VCH, 2019) Tinnemann, Verena; Hernández, Luissé; Fischer, Sarah C.L.; Arzt, Eduard; Bennewitz, Roland; Hensel, René
    Fibrillar adhesion pads of insects and geckoes have inspired the design of high-performance adhesives enabling a new generation of handling devices. Despite much progress over the last decade, the current understanding of these adhesives is limited to single contact pillars and the behavior of whole arrays is largely unexplored. In the study reported here, a novel approach is taken to gain insight into the detachment mechanisms of whole micropatterned arrays. Individual contacts are imaged by frustrated total internal reflection, allowing in situ observation of contact formation and separation during adhesion tests. The detachment of arrays is found to be governed by the distributed adhesion strength of individual pillars, but no collaborative effect mediated by elastic interactions can be detected. At the maximal force, about 30% of the mushroom structures are already detached. The adhesive forces decrease with reduced air pressure by 20% for the smooth and by 6% for the rough specimen. These contributions are attributed to a suction effect, whose strength depends critically on interfacial defects controlling the sealing quality of the contact. This dominates the detachment process and the resulting adhesion strength. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Bioinspired Underwater Adhesion to Rough Substrates by Cavity Collapse of Cupped Microstructures
    (Weinheim : Wiley-VCH, 2021) Wang, Yue; Hensel, René
    Underwater or wet adhesion is highly desirable for numerous applications but is counteracted by the liquids in the contact which weaken intermolecular attraction. The problem is exacerbated in conjunction with surface roughness when liquids partially remain in grooves or dimples of the substrate. In the present study, a cupped microstructure with a cavity inspired by suction organs of aquatic animals is proposed. The microstructures (cup radius of 100 µm) are made from polyurethane using two-photon lithography followed by replica molding. Adhesion to rough substrates is emulated experimentally by a micropatterned model substrate with varying channel widths. Pull-off stresses are found to be about 200 kPa, i.e., twice atmospheric pressure. Evaluation of force–displacement curves together with in situ observations reveal the adhesion mechanism, which involves adaptation to surface roughness and an elastic force induced by the collapse of the cavity that holds sealed contact with the substrate during retraction. This new microarchitecture may pave the way for next generation microstructures applicable to real, rough surfaces under wet conditions.