Search Results

Now showing 1 - 3 of 3
  • Item
    Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries
    (Basel : MDPI, 2018-2-6) Madian, Mahmoud; Eychmüller, Alexander; Giebeler, Lars
    The lithium ion battery (LIB) has proven to be a very reliably used system to store electrical energy, for either mobile or stationary applications. Among others, TiO2-based anodes are the most attractive candidates for building safe and durable lithium ion batteries with high energy density. A variety of TiO2 nanostructures has been thoroughly investigated as anodes in LIBs, e.g., nanoparticles, nanorods, nanoneedles, nanowires, and nanotubes discussed either in their pure form or in composites. In this review, we present the recent developments and breakthroughs demonstrated to synthesize safe, high power, and low cost nanostructured titania-based anodes. The reader is provided with an in-depth review of well-oriented TiO2-based nanotubes fabricated by anodic oxidation. Other strategies for modification of TiO2-based anodes with other elements or materials are also highlighted in this report.
  • Item
    Auger- and X-ray Photoelectron Spectroscopy at Metallic Li Material: Chemical Shifts Related to Sample Preparation, Gas Atmosphere, and Ion and Electron Beam Effects
    (Basel : MDPI, 2022) Oswald, Steffen
    Li-based batteries are a key element in reaching a sustainable energy economy in the near future. The understanding of the very complex electrochemical processes is necessary for the optimization of their performance. X-ray photoelectron spectroscopy (XPS) is an accepted method used to improve understanding around the chemical processes at the electrode surfaces. Nevertheless, its application is limited because the surfaces under investigation are mostly rough and inhomogeneous. Local elemental analysis, such as Auger electron spectroscopy (AES), could assist XPS to gain more insight into the chemical processes at the surfaces. In this paper, some challenges in using electron spectroscopy are discussed, such as binding energy (BE) referencing for the quantitative study of chemical shifts, gas atmospheric influences, or beam damage (including both AE and XP spectroscopy). Carefully prepared and surface-modified metallic lithium material is used as model surface, considering that Li is the key element for most battery applications.
  • Item
    Comparative Study of Onion-like Carbons Prepared from Different Synthesis Routes towards Li-Ion Capacitor Application
    (Basel : MDPI, 2022) Permana, Antonius Dimas Chandra; Ding, Ling; Gonzalez-Martinez, Ignacio Guillermo; Hantusch, Martin; Nielsch, Kornelius; Mikhailova, Daria; Omar, Ahmad
    Li-ion capacitors (LIC) have emerged as a promising hybrid energy storage system in response to increasing energy demands. However, to achieve excellent LIC performance at high rates, along with cycling stability, an alternative anode to graphite is needed. Porous high-surface-area carbons, such as onion-like carbons (OLCs), have been recently found to hold high potential as high-rate-capable LIC anodes. However, a systematic understanding of their synthesis route and morphology is lacking. In this study, OLCs prepared from self-made metal organic frameworks (MOFs) Fe-BTC and Fe-MIL100 by a simple pyrolysis method were compared to OLCs obtained via high-temperature annealing of nanodiamonds. The LICs with OLCs produced from Fe-BTC achieved a maximum energy density of 243 Wh kg−1 and a power density of 20,149 W kg−1. Furthermore, excellent capacitance retention of 78% after 10,000 cycles was demonstrated. LICs with MOF-derived OLCs surpassed the energy and power density of LICs with nanodiamond-derived OLCs. We determined the impact of the MOF precursor structure and morphology on the resulting OLC properties, as well as on the electrochemical performance. Thus, MOF-derived OLCs offer significant potential toward high-performance anode material for LICs, enabling control over structure and morphology, as well as easy scalability for industrial implementation.