Search Results

Now showing 1 - 2 of 2
  • Item
    Self-stabilization of the equilibrium state in ferroelectric thin films
    (Amsterdam : Elsevier, 2022) Gaal, Peter; Schmidt, Daniel; Khosla, Mallika; Richter, Carsten; Boesecke, Peter; Novikov, Dmitri; Schmidbauer, Martin; Schwarzkopf, Jutta
    (K,Na)NbO3 is a lead-free and sustainable ferroelectric material with electromechanical parameters comparable to Pb(Zr,Ti)O3 (PZT) and other lead-based solid solutions. It is therefore a promising candidate for caloric cooling and energy harvesting applications. Specifically, the structural transition from the low-temperature Mc- to the high-temperature c-phase displays a rich hierarchical order of domains and superdomains, that forms at specific strain conditions. The relevant length scales are few tens of nanometers for the domain and few micrometers for the superdomain size, respectively. Phase-field calculations show that this hierarchical order adds to the total free energy of the solid. Thus, domains and their formation has a strong impact on the functional properties relevant for electrocaloric cooling or energy harvesting applications. However, monitoring the formation of domains and superdomains is difficult and requires both, high spatial and high temporal resolution of the experiment. Synchrotron-based time-resolved X-ray diffraction methods in combination with scanning imaging X-ray microscopy is applied to resolve the local dynamics of the domain morphology with sub-micrometer spatial and nanosecond temporal resolution. In this regime, the material displays a novel self-stabilization mechanism of the domain morphology, which may be a general property of first-order phase transitions.
  • Item
    Revealing all states of dewetting of a thin gold layer on a silicon surface by nanosecond laser conditioning
    (Amsterdam : Elsevier, 2021) Ernst, Owen C.; Uebel, David; Kayser, Stefan; Lange, Felix; Teubner, Thomas; Boeck, Torsten
    Dewetting is a ubiquitous phenomenon which can be applied to the laser synthesis of nanoparticles. A classical spinodal dewetting process takes place in four successive states, which differ from each other in their morphology. In this study all states are revealed by interaction of pulsed nanosecond UV laser light with thin gold layers with thicknesses between 1 nm and 10 nm on (100) silicon wafers. The specific morphologies of the dewetting states are discussed with particular emphasis on the state boundaries. The main parameter determining which state is formed is not the duration for which the gold remains liquid, but rather the input energy provided by the laser. This shows that each state transition has a separate measurable activation energy. The temperature during the nanosecond pulses and the duration during which the gold remains liquid was determined by simulation using the COMSOL Multiphysics® software package. Using these calculations, an accurate local temperature profile and its development over time was simulated. An analytical study of the morphologies and formed structures was performed using Minkowski measures. With aid of this tool, the laser induced structures were compared with thermally annealed samples, with perfectly ordered structures and with perfectly random structures. The results show that both, structures of the laser induced and the annealed samples, strongly resemble the perfectly ordered structures. This reveals a close relationship between these structures and suggests that the phenomenon under investigation is indeed a spinodal dewetting generated by an internal material wave function. The purposeful generation of these structures and the elucidation of the underlying mechanism of dewetting by short pulse lasers may assist the realisation of various technical elements such as nanowires in science and industry. © 2020