Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

The influence of Mg doping on the nucleation of self-induced GaN nanowires

2012, Limbach, F., Caterino, R., Gotschke, T., Stoica, T., Calarco, R., Geelhaar, L., Riechert, H.

GaN nanowires were grown without any catalyst by plasma-assisted molecular beam epitaxy. Under supply of Mg, nanowire nucleation is faster, the areal density of wires increases to a higher value, and nanowire coalescence is more pronounced than without Mg. During nanowire nucleation the Ga desorption was monitored insitu by line-of-sight quadrupolemass spectrometry for various substrate temperatures. Nucleation energies of 4.0±0.3 eV and 3.2±0.3 eV without and with Mg supply were deduced, respectively. This effect has to be taken into account for the fabrication of nanowire devices and could be employed to tune the NW areal density.

Loading...
Thumbnail Image
Item

Ferroelectric switching in epitaxial GeTe films

2014, Kolobov, A.V., Kim, D.J., Giussani, A., Fons, P., Tominaga, J., Calarco, R., Gruverman, A.

In this paper, using a resonance-enhanced piezoresponse force microscopy approach supported by density functional theory computer simulations, we have demonstrated the ferroelectric switching in epitaxial GeTe films. It has been shown that in films with thickness on the order of several nanometers reversible reorientation of polarization occurs due to swapping of the shorter and longer Ge-Te bonds in the interior of the material. It is also hinted that for ultra thin films consisting of just several atomic layers weakly bonded to the substrate, ferroelectric switching may proceed through exchange of Ge and Te planes within individual GeTe layers.

Loading...
Thumbnail Image
Item

Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation

2016, Niemann, R., Hahn, S., Diestel, A., Backen, A., Schultz, L., Nielsch, K., Wagner, M.F.-X., Fähler, S.

Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.

Loading...
Thumbnail Image
Item

Kinetics versus thermodynamics of the metal incorporation in molecular beam epitaxy of (InxGa1−x)2O3

2016, Vogt, Patrick, Bierwagen, Oliver

We present a detailed study of the reaction kinetics and thermodynamics of the plasma-assisted oxide molecular beam epitaxy of the ternary compound (InxGa1−x)2O3 for 0 ≤ x ≤ 1. We measured the growth rate of the alloy in situ by laser reflectrometry as a function of growth temperature T G for different metal-to-oxygen flux ratios r Me, and nominal In concentrations x nom in the metal flux. We determined ex situ the In and Ga concentrations in the grown film by energy dispersive X-ray spectroscopy. The measured In concentration x shows a strong dependence on the growth parameters T G, r Me, and x nom whereas growth on different co-loaded substrates shows that in the macroscopic regime of ∼μm3 x does neither depend on the detailed layer crystallinity nor on crystal orientation. The data unveil that, in presence of In, Ga incorporation is kinetically limited by Ga2O desorption the same way as during Ga2O 3 growth. In contrast, In incorporation during ternary growth is thermodynamically suppressed by the presence of Ga due to stronger Ga–O bonds. Our experiments revealed that Ga adatoms decompose/etch the In–O bonds whereas In adatoms do not decompose/etch the Ga–O bonds. This result is supported by our thermochemical calculations. In addition we found that a low T G and/or excessively low r Me kinetically enables In incorporation into (InxGa1−x)2O3. This study may help growing high-quality ternary compounds (InxGa1−x)2O3 allowing band gap engineering over the range of 2.7–4.7 eV.

Loading...
Thumbnail Image
Item

Improved structural and electrical properties in native Sb2Te3/GexSb2Te3+x van der Waals superlattices due to intermixing mitigation

2017, Cecchi, Stefano, Zallo, Eugenio, Momand, Jamo, Wang, Ruining, Kooi, Bart J., Verheijen, Marcel A., Calarco, Raffaella

Superlattices made of Sb2Te3/GeTe phase change materials have demonstrated outstanding performance with respect to GeSbTe alloys in memory applications. Recently, epitaxial Sb2Te3/GeTe superlattices were found to feature GexSb2Te3+x blocks as a result of intermixing between constituting layers. Here we present the epitaxy and characterization of Sb2Te3/GexSb2Te3+x van der Waals superlattices, where GexSb2Te3+x was intentionally fabricated. X-ray diffraction, Raman spectroscopy, scanning transmission electron microscopy, and lateral electrical transport data are reported. The intrinsic 2D nature of both sublayers is found to mitigate the intermixing in the structures, significantly improving the interface sharpness and ultimately the superlattice structural and electrical properties.

Loading...
Thumbnail Image
Item

Evidence for spin to charge conversion in GeTe(111)

2016, Rinaldi, C., Rojas-Sánchez, J.C., Wang, R.N., Fu, Y., Oyarzun, S., Vila, L., Bertoli, S., Asa, M., Baldrati, L., Cantoni, M., George, J.-M., Calarco, R., Fert, A., Bertacco, R.

GeTe has been predicted to be the father compound of a new class of multifunctional materials, ferroelectric Rashba semiconductors, displaying a coupling between spin-dependent k-splitting and ferroelectricity. In this paper, we report on epitaxial Fe/GeTe(111) heterostructures grown by molecular beam epitaxy. Spin-pumping experiments have been performed in a radio-frequency cavity by pumping a spin current from the Fe layer into GeTe at the Fe ferromagnetic resonance and detecting the transverse charge current originated in the slab due to spin-to-charge conversion. Preliminary experiments indicate that a clear spin to charge conversion exists, thus unveiling the potential of GeTe for spin-orbitronics.

Loading...
Thumbnail Image
Item

Structural properties of Co2TiSi films on GaAs(001)

2016, Jenichen, B., Herfort, J., Hanke, M., Jahn, U., Kong, X., Dau, M.T., Trampert, A., Kirmse, H., Erwin, S.C.

Co2TiSi films were grown by molecular beam epitaxy on GaAs(001) and analyzed using reflection high-energy electron diffraction, and electron microscopy. In addition, X-ray diffraction was combined with lattice parameter calculations by density functional theory comparing the L21 and B2 structures and considering the influence of non-stoichiometry. Columnar growth is found and attributed to inhomogeneous epitaxial strain from non-random alloying. In films with thicknesses up to 13 nm, these columns may be the origin of perpendicular magnetization with the easy axis perpendicular to the sample surface. We found L21 and B2 ordered regions, however the [Co]/[Ti]-ratio is changing in dependence of the position in the film. The resulting columnar structure is leading to anisotropic B2-ordering with the best order parallel to the axes of the columns.

Loading...
Thumbnail Image
Item

Faceting and metal-exchange catalysis in (010) β-Ga2O3 thin films homoepitaxially grown by plasma-assisted molecular beam epitaxy

2018, Mazzolini, P., Vogt, P., Schewski, R., Wouters, C., Albrecht, M., Bierwagen, Oliver

We here present an experimental study on (010)-oriented -Ga2O3 thin films homoepitaxially grown by plasma assisted molecular beam epitaxy. We study the effect of substrate treatments (i.e., O-plasma and Ga-etching) and several deposition parameters (i.e., growth temperature and metal-to-oxygen flux ratio) on the resulting Ga2O3 surface morphology and growth rate. In situ and ex-situ characterizations identified the formation of (110) and (¯110)-facets on the nominally oriented (010) surface induced by the Ga-etching of the substrate and by several growth conditions, suggesting (110) to be a stable (yet unexplored) substrate orientation. Moreover, we demonstrate how metal-exchange catalysis enabled by an additional In-flux significantly increases the growth rate (>threefold increment) of monoclinic Ga2O3 at high growth temperatures, while maintaining a low surface roughness (rms < 0.5 nm) and preventing the incorporation of In into the deposited layer. This study gives important indications for obtaining device-quality thin films and opens up the possibility to enhance the growth rate in -Ga2O3 homoepitaxy on different surfaces [e.g., (100) and (001)] via molecular beam epitaxy.

Loading...
Thumbnail Image
Item

Research Update: Magnetoionic control of magnetization and anisotropy in layered oxide/metal heterostructures

2016, Duschek, K., Pohl, D., Fähler, S., Nielsch, K., Leistner, K.

Electric field control of magnetization and anisotropy in layered structures with perpendicular magnetic anisotropy is expected to increase the versatility of spintronic devices. As a model system for reversible voltage induced changes of magnetism by magnetoionic effects, we present several oxide/metal heterostructures polarized in an electrolyte. Room temperature magnetization of Fe-O/Fe layers can be changed by 64% when applying only a few volts in 1M KOH. In a next step, the bottom interface of the in-plane magnetized Fe layer is functionalized by an L10 FePt(001) underlayer exhibiting perpendicular magnetic anisotropy. During subsequent electrocrystallization and electrooxidation, well defined epitaxial Fe3O4/Fe/FePt heterostructures evolve. The application of different voltages leads to a thickness change of the Fe layer sandwiched between Fe-O and FePt. At the point of transition between rigid magnet and exchange spring magnet regime for the Fe/FePt bilayer, this induces a large variation of magnetic anisotropy.