Search Results

Now showing 1 - 4 of 4
  • Item
    Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3
    (London : Nature Publishing Group, 2019) Zhang, Y.; Holder, T.; Ishizuka, H.; de Juan, F.; Nagaosa, N.; Felser, C.; Yan, B.
    The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to generate above-band-gap photovoltage. While the guiding principle for BPVE materials is to break the crystal centrosymmetry, here we propose a magnetic photogalvanic effect (MPGE) that introduces the magnetism as a key ingredient and induces a giant BPVE. The MPGE emerges from the magnetism-induced asymmetry of the carrier velocity in the band structure. We demonstrate the MPGE in a layered magnetic insulator CrI3, with much larger photoconductivity than any previously reported results. The photocurrent can be reversed and switched by controllable magnetic transitions. Our work paves a pathway to search for magnetic photovoltaic materials and to design switchable devices combining magnetic, electronic, and optical functionalities.
  • Item
    Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes
    (London : Nature Publishing Group, 2019) Li, Y.; Kovačič, M.; Westphalen, J.; Oswald, S.; Ma, Z.; Hänisch, C.; Will, P.-A.; Jiang, L.; Junghaehnel, M.; Scholz, R.; Lenk, S.; Reineke, S.
    Organic light-emitting diodes (OLEDs) suffer from notorious light trapping, resulting in only moderate external quantum efficiencies. Here, we report a facile, scalable, lithography-free method to generate controllable nanostructures with directional randomness and dimensional order, significantly boosting the efficiency of white OLEDs. Mechanical deformations form on the surface of poly(dimethylsiloxane) in response to compressive stress release, initialized by reactive ions etching with periodicity and depth distribution ranging from dozens of nanometers to micrometers. We demonstrate the possibility of independently tuning the average depth and the dominant periodicity. Integrating these nanostructures into a two-unit tandem white organic light-emitting diode, a maximum external quantum efficiency of 76.3% and a luminous efficacy of 95.7 lm W−1 are achieved with extracted substrate modes. The enhancement factor of 1.53 ± 0.12 at 10,000 cd m−2 is obtained. An optical model is built by considering the dipole orientation, emitting wavelength, and the dipole position on the sinusoidal nanotexture.
  • Item
    Time-reversal symmetry breaking type-II Weyl state in YbMnBi2
    (London : Nature Publishing Group, 2019) Borisenko, S.; Evtushinsky, D.; Gibson, Q.; Yaresko, A.; Koepernik, K.; Kim, T.; Ali, M.; van den Brink, J.; Hoesch, M.; Fedorov, A.; Haubold, E.; Kushnirenko, Y.; Soldatov, I.; Schäfer, R.; Cava, R.J.
    Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi2. We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.
  • Item
    Magnetic origami creates high performance micro devices
    (London : Nature Publishing Group, 2019) Gabler, F.; Karnaushenko, D.D.; Karnaushenko, D.; Schmidt, O.G.
    Self-assembly of two-dimensional patterned nanomembranes into three-dimensional micro-architectures has been considered a powerful approach for parallel and scalable manufacturing of the next generation of micro-electronic devices. However, the formation pathway towards the final geometry into which two-dimensional nanomembranes can transform depends on many available degrees of freedom and is plagued by structural inaccuracies. Especially for high-aspect-ratio nanomembranes, the potential energy landscape gives way to a manifold of complex pathways towards misassembly. Therefore, the self-assembly yield and device quality remain low and cannot compete with state-of-the art technologies. Here we present an alternative approach for the assembly of high-aspect-ratio nanomembranes into microelectronic devices with unprecedented control by remotely programming their assembly behavior under the influence of external magnetic fields. This form of magnetic Origami creates micro energy storage devices with excellent performance and high yield unleashing the full potential of magnetic field assisted assembly for on-chip manufacturing processes.