Search Results

Now showing 1 - 2 of 2
  • Item
    Entwicklung und Charakterisierung von Instrumenten zur hochauflösenden Spektropolarimetrie
    (Freiburg : Universität Freiburg, 2016) Schubert, Matthias Johannes
    Kontext Unsere Sonne stellt ein einzigartiges Hochenergie-Plasmalabor dar, welches mit Teleskopen räumlich aufgelöst studiert werden kann. Hier ist es möglich, die moderne Physik an Hand von Beobachtungen zu verifizieren und zu erweitern, welche durch Experimente nicht erfasst werden können. Aktuelle Simulationen der Magnetokonvektion zur Beschreibung der dynamischen Vorgänge erreichen zum Beispiel in der solaren Photosphäre eine räumliche Auflösung bis zu 6km bei einer Wellenlänge von 500nm und modellieren im Ansatz die Entstehung von Poren, Sonnenflecken oder koronalen Massenauswürfen. Mit Hilfe hochaufgelöster spektropolarimetrischer Beobachtungen und den daraus gewonnenen zweidimensionalen Karten der Dopplergeschwindigkeiten und zugehörigen magnetischen Feldvektoren in unterschiedlichen solaren Atmosphärenschichten müssen diese Modelle überprüft werden. Durch den Bau eines neuen bodengebundenen 4 m-Teleskops und der Entwicklung eines zweidimensionalem Spektropolarimeters stehen in naher Zukunft Werkzeuge zur Verfügung, um hochdynamische, kleinskalige Prozesse für wissenschaftliche Studien zu beobachten. Zielsetzung Entwicklung eines Simulationsalgorithmus zur Beschreibung der instrumentellen Einflüsse eines zweidimensionalen Spektropolarimeters auf physikalische Messungen. Das zu entwickelnde Filterinstrument besteht aus einem Vorfilter, einer Kombination aus zwei oder drei Fabry-Pérot-Interferometern (FPI) und einem Polarisationsmodulator. Da die induzierten Fehler auf wissenschaftliche Beobachtungen nicht vernachlässigbar sind, ist es notwendig, passende Methoden zur Datenkalibration zu entwickeln. Aus den simulierten Fehlern auf physikalische Messgrößen und den Untersuchungen zur Datenkalibration werden aus den Ergebnissen Bedingungen an den Herstellungsprozess des Filterinstrumentes abgeleitet, sodass die geforderte physikalische Messgenauigkeit erfüllt ist. Methoden Da das Kiepenheuer-Institut ein baugleiches Instrument auf Teneriffa am Vakuum-Turm-Teleskop am Observatorio del Teide betreibt, wurde hier eine Charakterisierungskampagne durchgeführt, um die instrumentellen Einflüsse auf wissenschaftliche Beobachtungen unter realistischen Bedingungen zu bestimmen. Diese Untersuchungen bildeten die Grundlage der im Simulationsalgorithmus berücksichtigten instrumentellen Fehlerquellen: Mikrorauigkeit, Reflektivitäts- und Formfehler der Plattenoberflächen der FPIs, das Photonenrauschen, dem Öffnungsverhältnis des Strahlengangs und der Abstand der einzelnen FPIs zu einer definierten Fokalebene des Teleskopes. Formfehler, die Mikrorauigkeit und Reflektivitätsfehler der Plattenoberflächen der FPIs verschieben und verbreitern zum Beispiel das zu beobachtende Linienprofil. Daher wird ein Fehler in zu ermittelnden Dopplergeschwindigkeits- oder Halbwertsbreitenkarten der solaren Oberfläche induziert. Außerdem gibt der Photonenfluss, bzw. das Photonenrauschen die Sensibilität für Messungen der magnetischen Feldstärke vor. Zum Studium der Messgenauigkeit des Filterinstrumentes wurden Beobachtungen der ruhigen Sonne in der Photosphäre simuliert und an Hand dessen der Einfluss instrumenteller Fehler angegeben. In der vorliegenden Arbeit wurde der Einfluss zweier unterschiedliche Konfigurationen des Instrumentes auf wissenschaftliche Sonnenbeobachtungen untersucht: Instrument 1 mit einer spektralen Bandbreite 3.8pm und Instrument 2 mit 6.1pm (die spektralen Bandbreiten gelten für eine Wellenlänge von 630 nm). In den Simulationen wurden die Positionen der FPIs im optischen Strahlengang einmal als theoretisch genau in der Fokalebene liegend angenommen und das andere mal in einem spezifischem Abstand hierzu, wodurch der Effekt einer defokussierten Installation der einzelnen Interferometer untersucht werden konnte. Ergebnisse Die Simulationsergebnisse für die Mikrorauigkeiten konnten zeigen, dass eine defokussierte Installation der FPIs im Strahlengang, in Abhängigkeit zum Öffnungsverhältnis, die induzierten Fehler in den Linienkernpositionen reduziert, jedoch die Halbwertsbreiten stark zunehmen. Außerdem konnte der in dieser Arbeit entwickelte Kalibrationsalgorithmus an Hand der Simulationen verifiziert werden und stellt ein effektives Werkzeug zur Reduzierung der induzierten Linienverschiebungen, bzw. Dopplergeschwindigkeitsfehler um einen Faktor 10 dar. Zusammenfassend wurden aus den simulierten Beobachtungen und der Effektivität der Kalibrationsmethode die Grenzwerte für die Oberflächenqualität der FPIs für den Herstellungsprozess abgeleitet, sodass die geforderte physikalische Messgenauigkeit erfüllt ist. Aus einem Vergleich beider Instrumente konnte gezeigt werden, dass für die geforderte Messgenauigkeiten das Instrument mit geringerer spektraler Auflösung die Anforderungen am Besten erfüllt und somit realisiert wird. Ausblick In der vorliegenden Arbeit wurde ein Softwarepaket entwickelt, welches die relevanten, beeinflussenden Parameter auf wissenschaftliche Beobachtungen mit einem zweidimensionalen Multi-Fabry-Pérot-Spektrometer mit Polarisationsmodulator beschreibt. Für zukünftige Projekte steht nun ein Werkzeug zu Verfügung, mit Hilfe dessen verschiedene Instrumentenkonfigurationen an Hand simulierter Beobachtungen getestet und optimiert werden können. Somit ist eine Möglichkeit geschaffen, die benötigte Oberflächenqualität der FPIs, die Form und Transmission des Vorfilter und die Effizienz des Polarisationsmodulators aus Bedingungen an die Messgenauigkeit abzuleiten. Zusätzlich kann das hier entwickelte Softwarepaket auch dazu verwendet werden, Beobachtungsszenarien zu entwickeln (Belichtungszeiten, Anzahl spektraler Abtastschritte, Akkumulationen, ...), welche von der Größe und zeitlichen Entwicklung, den zu erwartenden zugehörigen Magnetfeldern und dem Photonenfluss in der Detektorebene der zu untersuchenden solaren Strukturen vorgegeben wird.
  • Item
    Precision spectroscopy with a frequency-comb-calibrated solar spectrograph
    (Freiburg : Universität Freiburg, 2015) Doerr, Hans-Peter
    The measurement of the velocity field of the plasma at the solar surface is a standard diagnostic tool in observational solar physics. Detailed information about the energy transport as well as on the stratification of temperature, pressure and magnetic fields in the solar atmosphere are encoded in Doppler shifts and in the precise shape of the spectral lines. The available instruments deliver data of excellent quality and precision. However, absolute wavelength calibration in solar spectroscopy was so far mostly limited to indirect methods and in general suffers from large systematic uncertainties of the order of 100 m/s. During the course of this thesis, a novel wavelength calibration system based on a laser frequency comb was deployed to the solar Vacuum Tower Telescope (VTT), Tenerife, with the goal of enabling highly accurate solar wavelength measurements at the level of 1 m/s on an absolute scale. The frequency comb was developed in a collaboration between the Kiepenheuer-Institute for Solar Physics, Freiburg, Germany and the Max Planck Institute for Quantum Optics, Garching, Germany. The efforts cumulated in the new prototype instrument LARS (Lars is an Absolute Reference Spectrograph) for solar precision spectroscopy which is in preliminary scientific operation since~2013. The instrument is based on the high-resolution echelle spectrograph of the VTT for which feed optics based on single-mode optical fibres were developed for this project. The setup routinely achieves an absolute calibration accuracy of 60 cm/s and a repeatability of 2.5 cm/s. An unprecedented repeatability of only 0.32 cm/s could be demonstrated with a differential calibration scheme. In combination with the high spectral resolving power of the spectrograph of 7x10^5 and virtually absent internal scattered light, LARS provides a spectral purity and fidelity that previously was the domain of Fourier-transform spectrometers only. The instrument therefore provides unique capabilities for precision spectroscopy of the Sun and laboratory light sources. The first scientific observations aimed at measuring the accurate wavelengths of selected solar Fraunhofer lines to characterise the so-called convective blue shift and its centre to limb variation. The convective blueshifts were derived with respect to laboratory wavelengths that were obtained from spectral lamps measured with the same instrument. The measurements agree with previous studies but provide a way higher accuracy. The data is only partially compatible with numerical simulations that were published recently. Further measurements were carried out to provide the absolute wavelengths of telluric O2 lines that are commonly used for wavelength calibration. With an accuracy of 1 m/s, these new measurements are two orders of magnitude better than existing data.