Search Results

Now showing 1 - 4 of 4
  • Item
    Non-Markovian and Collective Search Strategies
    ([Ithaca, NY] : Arxiv.org, 2023) Meyer, Hugues; Rieger, Heiko
    Agents searching for a target can improve their efficiency by memorizing where they have already been searching or by cooperating with other searchers and using strategies that benefit from collective effects. This chapter reviews such concepts: non-Markovian and collective search strategies. We start with the first passage properties of continuous non-Markovian processes and then proceed to the discrete random walker with 1-step and n-step memory. Next we discuss the auto-chemotactic walker, a random walker that produces a diffusive chemotactic cue from which the walker tries to avoid. Then ensembles of agents searching for a single target are discussed, whence the search efficiency may comprise in addition to the first passage time also metabolic costs. We consider the first passage properties of ensembles of chemotactic random walkers and then the pursuit problem, in which searchers (or hunters / predators) see the mobile target over a certain distance. Evasion strategies of single or many targets are also elucidated. Finally we review collective foraging strategies comprising many searchers and many immobile targets. We finish with an outlook on future research directions comprising yet unexplored search strategies of immune cells and in swarm robotics.
  • Item
    Significance of Elastic Coupling for Stresses and Leakage in Frictional Contacts
    ([Ithaca, NY] : Arxiv.org, 2023) Müller, Christian; Müser, Martin H.; Carbone, Giuseppe; Menga, Nicola
    We study how the commonly neglected coupling of normal and in-plane elastic response affects tribological properties when Hertzian or randomly rough indenters slide past an elastic body. Compressibility-induced coupling is found to substantially increase maximum tensile stresses, which cause materials to fail, and to decrease friction such that Amontons law is violated macroscopically even when it holds microscopically. Confinement-induced coupling increases friction and enlarges domains of high tension. Moreover, both types of coupling affect the gap topography and thereby leakage. Thus, coupling can be much more than a minor perturbation of a mechanical contact.
  • Item
    Stationary particle currents in sedimenting active matter wetting a wall
    ([Ithaca, NY] : Arxiv.org, 2024) Mangeat, Matthieu; Chakraborty, Shaur; Wysocki, Adam; Rieger, Heiko
    Recently it was predicted, on the basis of a lattice gas model, that scalar active matter in a gravitational field would rise against gravity up a confining wall or inside a thin capillary - in spite of repulsive particle-wall interactions [Phys. Rev. Lett. 124, 048001 (2020)]. In this paper we confirm this prediction with sedimenting active Brownian particles (ABPs) in a box numerically and elucidate the mechanism leading to the formation of a meniscus rising above the bulk of the sedimentation region. The height of the meniscus increases with the activity of the system, algebraically with the Péclet number. The formation of the meniscus is determined by a stationary circular particle current, a vortex, centered at the base of the meniscus, whose size and strength increase with the ABP activity. The origin of these vortices can be traced back to the confinement of the ABPs in a box: already the stationary state of ideal (non-interacting) ABPs without gravitation displays circular currents that arrange in a highly symmetric way in the eight octants of the box. Gravitation distorts this vortex configuration downward, leaving two major vortices at the two side walls, with a strong downward flow along the walls. Repulsive interactions between the ABPs change this situation only as soon as motility induced phase separation (MIPS) sets in and forms a dense, sedimented liquid region at the bottom, which pushes the center of the vortex upwards towards the liquid-gas interface. Self-propelled particles therefore represent an impressive realization of scalar active matter that forms stationary particle currents being able to perform visible work against gravity or any other external field, which we predict to be observable experimentally in active colloids under gravitation.
  • Item
    The double-well Bose Hubbard model with nearest-neighbor and cavity-mediated long-range interactions
    ([Ithaca, NY] : Arxiv.org, 2023) Sicks, Johannes; Rieger, Heiko
    We consider a one-dimensional Bose-Hubbard model (BHM) with on-site double-well potentials and study the effect of nearest-neighbor repulsion and cavity-mediated long-range interactions by calculating the ground-state phase diagrams with quantum Monte-Carlo simulations. We show that when the intra-well repulsion is as strong as the on-site repulsion a dimerized Mott insulator phase appears at the tip of the dimerized Density Wave phase for a density of one particle per double well. Furthermore, we find a dimerized Haldane insulator phase in the double-well BHM with nearest-neighbor interaction, which is identical to a dimerized BHM with repulsive interactions up to the third neighbor.