Search Results

Now showing 1 - 10 of 45
  • Item
    Signatures of attosecond electronic–nuclear dynamics in the one-photon ionization of molecular hydrogen: analytical model versusab initiocalculations
    ([London] : IOP, 2015) Medišauskas, Lukas; Morales, Felipe; Palacios, Alicia; González-Castrillo, Alberto; Plimak, Lev; Smirnova, Olga; Martín, Fernando; Ivanov, Misha Yu
    We present an analytical model based on the time-dependent WKB approximation to reproduce the photoionization spectra of an H2 molecule in the autoionization region. We explore the nondissociative channel, which is the major contribution after one-photon absorption, and we focus on the features arising in the energy differential spectra due to the interference between the direct and the autoionization pathways. These features depend on both the timescale of the electronic decay of the autoionizing state and the time evolution of the vibrational wavepacket created in this state. With full ab initio calculations and with a one-dimensional approach that only takes into account the nuclear wavepacket associated to the few relevant electronic states we compare the ground state, the autoionizing state, and the background continuum electronic states. Finally, we illustrate how these features transform from molecular-like to atomic-like by increasing the mass of the system, thus making the electronic decay time shorter than the nuclear wavepacket motion associated with the resonant state. In other words, autoionization then occurs faster than the molecular dissociation into neutrals.
  • Item
    A recurrent plot based stochastic nonlinear ray propagation model for underwater signal propagation
    ([London] : IOP, 2020) Haiyang, Yao; Haiyan, Wang; Yong, Xu; Kurths, Juergen
    A stochastic nonlinear ray propagation model is proposed to carry out an exploration of the nonlinear ray theory in underwater signal propagation. The recurrence plot method is proposed to quantify the ray chaos and stochastics to optimize the model. Based on this method, the distribution function of the control parameter d is derived. Experiments and simulations indicate that this stochastic nonlinear ray propagation model provides a good explanation and description on the stochastic frequency shift in underwater signal propagation. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure
    ([London] : IOP, 2015) Van Gaens, W.; Iseni, S.; Schmidt-Bleker, A.; Weltmann, K.-D.; Reuter, S.; Bogaerts, A.
    In this paper we study the cold atmospheric pressure plasma jet, called kinpen, operating in Ar with different admixture fractions up to 1% pure ${{{\rm N}}_{2}}$, ${{{\rm O}}_{2}}$ and ${{{\rm N}}_{2}}$ + ${{{\rm O}}_{2}}$. Moreover, the device is operating with a gas curtain of dry air. The absolute net production rates of the biologically active ozone (${{{\rm O}}_{3}}$) and nitrogen dioxide (${\rm N}{{{\rm O}}_{2}}$) species are measured in the far effluent by quantum cascade laser absorption spectroscopy in the mid-infrared. Additionally, a zero-dimensional semi-empirical reaction kinetics model is used to calculate the net production rates of these reactive molecules, which are compared to the experimental data. The latter model is applied throughout the entire plasma jet, starting already within the device itself. Very good qualitative and even quantitative agreement between the calculated and measured data is demonstrated. The numerical model thus yields very useful information about the chemical pathways of both the ${{{\rm O}}_{3}}$ and the ${\rm N}{{{\rm O}}_{2}}$ generation. It is shown that the production of these species can be manipulated by up to one order of magnitude by varying the amount of admixture or the admixture type, since this affects the electron kinetics significantly at these low concentration levels.
  • Item
    Death and rebirth of neural activity in sparse inhibitory networks
    ([London] : IOP, 2017) Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro
    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.
  • Item
    Corrigendum: Generation of high-quality GeV-class electron beams utilizing attosecond ionization injection (2021 New J. Phys. 23 043016)
    ([London] : IOP, 2021) Lécz, Zsolt; Andreev, Alexander; Kamperidis, C.; Hafz, Nasr
    Acceleration of electrons in laser-driven plasma wakefields has been extended up to the ∼8 GeV energy within a distance of tens of centimeters. However, in applications, requiring small energy spread within the electron bunch, only a small portion of the bunch can be used and often the low-energy electrons represent undesired background in the spectrum. We present a compact and tunable scheme providing clean and mono-energetic electron bunches with less than one percent energy spread and with central energy on the GeV level. It is a two-step process consisting of ionization injection with attosecond pulses and acceleration in a capillary plasma wave-guide. Semi-analytical theory and particle-in-cell simulations are used to accurately model the injection and acceleration steps.
  • Item
    Phase cycling of extreme ultraviolet pulse sequences generated in rare gases
    ([London] : IOP, 2020) Wituschek, Andreas; Kornilov, Oleg; Witting, Tobias; Maikowski, Laura; Stienkemeier, Frank; Vrakking, Marc J.J.; Bruder, Lukas
    The development of schemes for coherent nonlinear time-domain spectroscopy in the extreme-ultraviolet regime (XUV) has so far been impeded by experimental difficulties that arise at these short wavelengths. In this work we present a novel experimental approach, which facilitates the timing control and phase cycling of XUV pulse sequences produced by harmonic generation in rare gases. The method is demonstrated for the generation and high spectral resolution characterization of narrow-bandwidth harmonics (˜14 eV) in argon and krypton. Our technique simultaneously provides high phase stability and a pathway-selective detection scheme for nonlinear signals - both necessary prerequisites for all types of coherent nonlinear spectroscopy. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    Neural partial differential equations for chaotic systems
    ([London] : IOP, 2021) Gelbrecht, Maximilian; Boers, Niklas; Kurths, Jürgen
    When predicting complex systems one typically relies on differential equation which can often be incomplete, missing unknown influences or higher order effects. By augmenting the equations with artificial neural networks we can compensate these deficiencies. We show that this can be used to predict paradigmatic, high-dimensional chaotic partial differential equations even when only short and incomplete datasets are available. The forecast horizon for these high dimensional systems is about an order of magnitude larger than the length of the training data.
  • Item
    Bright optical centre in diamond with narrow, highly polarised and nearly phonon-free fluorescence at room temperature
    ([London] : IOP, 2017) John, Roger; Lehnert, Jan; Mensing, Michael; Spemann, Daniel; Pezzagna, Sébastien; Meijer, Jan
    Using shallow implantation of ions and molecules with masses centred at 27 atomic mass units (amu) in diamond, a new artificial optical centre with unique properties has been created. The centre shows a linearly polarised fluorescence with a main narrow emission line mostly found at 582 nm, together with a weak vibronic sideband at room temperature. The fluorescence lifetime is ∼2 ns and the brightest centres are more than three times brighter than the nitrogen-vacancy centres. A majority of the centres shows stable fluorescence whereas some others present a blinking behaviour, at faster or slower rates. Furthermore, a second kind of optical centre has been simultaneously created in the same diamond sample, within the same ion implantation run. This centre has a narrow zero-phonon line (ZPL) at ∼546 nm and a broad phonon sideband at room temperature. Interestingly, optically detected magnetic resonance (ODMR) has been measured on several single 546 nm centres and two resonance peaks are found at 0.99 and 1.27 GHz. In view of their very similar ODMR and optical spectra, the 546 nm centre is likely to coincide with the ST1 centre, reported once (with a ZPL at 550 nm), but of still unknown nature. These new kinds of centres are promising for quantum information processing, sub-diffraction optical imaging or use as single-photon sources.
  • Item
    Dynamical network size estimation from local observations
    ([London] : IOP, 2020) Tang, Xiuchuan; Huo, Wei; Yuan, Ye; Li, Xiuting; Shi, Ling; Kurths, Jürgen
    Here we present a method to estimate the total number of nodes of a network using locally observed response dynamics. The algorithm has the following advantages: (a) it is data-driven. Therefore it does not require any prior knowledge about the model; (b) it does not need to collect measurements from multiple stimulus; and (c) it is distributed as it uses local information only, without any prior information about the global network. Even if only a single node is measured, the exact network size can be correctly estimated using a single trajectory. The proposed algorithm has been applied to both linear and nonlinear networks in simulation, illustrating the applicability to real-world physical networks. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities
    ([London] : IOP, 2018) Herzer, S.; Woldegeorgis, A.; Polz, J.; Reinhard, A.; Almassarani, M.; Beleites, B.; Ronneberger, F.; Grosse, R.; Paulus, G.G.; Hübner, U.; May, T.; Gopal, A.
    We experimentally characterize the generation of high-power terahertz radiation (THz) at the rear surface of a target irradiated by multiple laser pulses. A detailed dependence of the THz yield as a function of laser pulse duration, energy, target material and thickness is presented. We studied the THz radiation emitted mainly in two directions from the target rear surface, namely target normal (acceptance angle 0.87 sr) and non-collinear direction (perpendicular to the target normal direction—acceptance angle 4.12 sr). Independent measurements based on electro-optic diagnostics and pyroelectric detector were employed to estimate the THz yield. Most of the energy is emitted at large angles relative to the target normal direction. THz yield increases with incident laser intensity and thinner targets are better emitters of THz radiation compared to thicker ones.