Search Results

Now showing 1 - 10 of 26
  • Item
    Increasing the Diversity and Understanding of Semiconductor Nanoplatelets by Colloidal Atomic Layer Deposition
    (Weinheim : Wiley-VCH, 2020) Reichhelm, Annett; Hübner, René; Damm, Christine; Nielsch, Kornelius; Eychmüller, Alexander
    Nanoplatelets (NPLs) are a remarkable class of quantum confined materials with size-dependent optical properties, which are determined by the defined thickness of the crystalline platelets. To increase the variety of species, the colloidal atomic layer deposition method is used for the preparation of increasingly thicker CdSe NPLs. By growing further crystalline layers onto the surfaces of 4 and 5 monolayers (MLs) thick NPLs, species from 6 to 13 MLs are achieved. While increasing the thickness, the heavy-hole absorption peak shifts from 513 to 652 nm, leading to a variety of NPLs for applications and further investigations. The thickness and number of MLs of the platelet species are determined by high-resolution transmission electron microscopy (HRTEM) measurements, allowing the interpretation of several contradictions present in the NPL literature. In recent years, different assumptions are published, leading to a lack of clarity in the fundamentals of this field. Regarding the ongoing scientific interest in NPLs, there is a certain need for clarification, which is provided in this study. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    A Giant Bulk-Type Dresselhaus Splitting with 3D Chiral Spin Texture in IrBiSe
    (Weinheim : Wiley-VCH, 2020) Liu, Zhonghao; Thirupathaiah, Setti; Yaresko, Alexander N.; Kushwaha, Satya; Gibson, Quinn; Xia, Wei; Guo, Yanfeng; Shen, Dawei; Cava, Robert J.; Borisenko, Sergey V.
    Materials with giant spin splitting are desired for spintronic applications. The fabrications of spintronic devices from half metals with one spin direction are often hampered, however, by stray magnetic fields, domain walls, short spin coherence times, scattering on magnetic atoms or magnetically active interfaces, and other characteristics that come along with the magnetism. The surfaces of topological insulators, or Dirac/Weyl semimetals, could be an alternative, but production of high-quality thin films without the presence of the bulk states at the Fermi energy remains very challenging. Here, by utilizing angle-resolved photoemission spectroscopy, a record-high Dresselhaus spin–orbit splitting of the bulk state in the nonmagnetic IrBiSe is found. The band structure calculations indicate that the splitting band is fully spin-polarized with 3D chiral spin texture. As a source of spin-polarized electrons, lightly doped IrBiSe is expected to generate electric-field-controlled spin-polarized currents, free from back scattering, and could host triplet and Fulde–Ferrel–Larkin–Ovchinnikov (FFLO) superconductivity. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Symmetry‐Induced Selective Excitation of Topological States in Su–Schrieffer–Heeger Waveguide Arrays
    (Weinheim : Wiley-VCH, 2023) Tang, Min; Wang, Jiawei; Valligatla, Sreeramulu; Saggau, Christian N.; Dong, Haiyun; Saei Ghareh Naz, Ehsan; Klembt, Sebastian; Lee, Ching Hua; Thomale, Ronny; van den Brink, Jeroen; Fulga, Ion Cosma; Schmidt, Oliver G.; Ma, Libo
    The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Herein, the topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su–Schrieffer–Heeger mirror symmetric waveguides is reported. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bidirectional topological transitions between symmetric and antisymmetric TZMs can be achieved with proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks.
  • Item
    Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity
    (Weinheim : Wiley-VCH, 2022) Borrmann, Fabian; Tsuda, Takuya; Guskova, Olga; Kiriy, Nataliya; Hoffmann, Cedric; Neusser, David; Ludwigs, Sabine; Lappan, Uwe; Simon, Frank; Geisler, Martin; Debnath, Bipasha; Krupskaya, Yulia; Al‐Hussein, Mahmoud; Kiriy, Anton
    The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
  • Item
    Tunable Circular Dichroism by Photoluminescent Moiré Gratings
    (Weinheim : Wiley-VCH, 2020) Aftenieva, Olha; Schnepf, Max; Mehlhorn, Börge; König, Tobias A.F.
    In nanophotonics, there is a current demand for ultrathin, flexible nanostructures that are simultaneously easily tunable, demonstrate a high contrast, and have a strong response in photoluminescent polarization. In this work, the template-assisted self-assembly of water-dispersed colloidal core–shell quantum dots into 1D light-emitting sub-micrometer gratings on a flexible substrate is demonstrated. Combining such structures with a light-absorbing metallic counterpart by simple stacking at various angles results in a tunable Moiré pattern with strong lateral contrast. Furthermore, a combination with an identical emitter-based grating leads to a chiroptical effect with a remarkably high degree of polarization of 0.72. Such a structure demonstrates direct circular polarized photoluminescence, for the first time, without a need for an additional chiral template as an intermediary. The suggested approach allows for reproducible, large-area manufacturing at reasonable costs and is of potential use for chiroptical sensors, photonic circuit applications, or preventing counterfeit. © 2020 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Photoluminescence Mapping over Laser Pulse Fluence and Repetition Rate as a Fingerprint of Charge and Defect Dynamics in Perovskites
    (Weinheim : Wiley-VCH, 2023) Rao, Shraddha M.; Kiligaridis, Alexander; Yangui, Aymen; An, Qingzhi; Vaynzof, Yana; Scheblykin, Ivan G.
    Defects in metal halide perovskites (MHP) are photosensitive, making the observer effect unavoidable when laser spectroscopy methods are applied. Photoluminescence (PL) bleaching and enhancement under light soaking and recovery in dark are examples of the transient phenomena that are consequent to the creation and healing of defects. Depending on the initial sample composition, environment, and other factors, the defect nature and evolution can strongly vary, making spectroscopic data analysis prone to misinterpretations. Herein, the use of an automatically acquired dependence of PL quantum yield (PLQY) on the laser pulse repetition rate and pulse fluence as a unique fingerprint of both charge carrier dynamics and defect evolution is demonstrated. A simple visual comparison of such fingerprints allows for assessment of similarities and differences between MHP samples. The study illustrates this by examining methylammonium lead triiodide (MAPbI3) films with altered stoichiometry that just after preparation showed very pronounced defect dynamics at time scale from milliseconds to seconds, clearly distorting the PLQY fingerprint. Upon weeks of storage, the sample fingerprints evolve toward the standard stoichiometric MAPbI3 in terms of both charge carrier dynamics and defect stability. Automatic PLQY mapping can be used as a universal method for assessment of perovskite sample quality.
  • Item
    Strong and Weak 3D Topological Insulators Probed by Surface Science Methods
    (Weinheim : Wiley-VCH, 2020) Morgenstern, Markus; Pauly, Christian; Kellner, Jens; Liebmann, Marcus; Pratzer, Marco; Eschbach, Markus; Plucinski, Lukacz; Otto, Sebastian; Rasche, Bertold; Ruck, Michael; Richter, Manuel; Just, Sven; Lüpke, Felix; Voigtländer, Bert
    The contributions of surface science methods to discover and improve 3D topological insulator materials are reviewed herein, illustrated with examples from the authors’ own work. In particular, it is demonstrated that spin-polarized angular-resolved photoelectron spectroscopy is instrumental to evidence the spin-helical surface Dirac cone, to tune its Dirac point energy toward the Fermi level, and to discover novel types of topological insulators such as dual ones or switchable ones in phase change materials. Moreover, procedures are introduced to spatially map potential fluctuations by scanning tunneling spectroscopy and to identify topological edge states in weak topological insulators. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Quantum Transport in Nanostructures of 3D Topological Insulators
    (Weinheim : Wiley-VCH, 2020) Giraud, Romain; Dufouleur, Joseph
    Quantum transport measurement is an efficient tool to unveil properties of topological surface states in 3D topological insulators. Herein, experimental and theoretical results are reviewed, presenting first some methods for the growth of nanostructures. The effect of the disorder and the band bending is discussed in details both experimentally and theoretically. Then, the focus is put on disorder and quantum confinement effect in topological surface states of 3D topological insulators narrow nanostructures. Such effect can be revealed by investigating quantum interferences at very low temperature such as Aharonov–Bohm oscillations or universal conductance fluctuations. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Building Hierarchical Martensite
    (Weinheim : Wiley-VCH, 2020) Schwabe, Stefan; Niemann, Robert; Backen, Anja; Wolf, Daniel; Damm, Christine; Walter, Tina; Seiner, Hanuš; Heczko, Oleg; Nielsch, Kornelius; Fähler, Sebastian
    Martensitic materials show a complex, hierarchical microstructure containing structural domains separated by various types of twin boundaries. Several concepts exist to describe this microstructure on each length scale, however, there is no comprehensive approach bridging the whole range from the nano- up to the macroscopic scale. Here, it is described for a Ni-Mn-based Heusler alloy how this hierarchical microstructure is built from scratch with just one key parameter: the tetragonal distortion of the basic building block at the atomic level. Based on this initial block, five successive levels of nested building blocks are introduced. At each level, a larger building block is formed by twinning the preceding one to minimize the relevant energy contributions locally. This naturally explains the coexistence of different types of twin boundaries. The scale-bridging approach of nested building blocks is compared with experiments in real and reciprocal space. The approach of nested building blocks is versatile as it can be applied to the broad class of functional materials exhibiting diffusionless transformations. © 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Magnetic Nanoparticle Chains in Gelatin Ferrogels: Bioinspiration from Magnetotactic Bacteria
    (Weinheim : Wiley-VCH, 2019) Sturm, Sebastian; Siglreitmeier, Maria; Wolf, Daniel; Vogel, Karin; Gratz, Micha; Faivre, Damien; Lubk, Axel; Büchner, Bernd; Sturm, Elena V.; Cölfen, Helmut
    Inspired by chains of ferrimagnetic nanocrystals (NCs) in magnetotactic bacteria (MTB), the synthesis and detailed characterization of ferrimagnetic magnetite NC chain-like assemblies is reported. An easy green synthesis route in a thermoreversible gelatin hydrogel matrix is used. The structure of these magnetite chains prepared with and without gelatin is characterized by means of transmission electron microscopy, including electron tomography (ET). These structures indeed bear resemblance to the magnetite assemblies found in MTB, known for their mechanical flexibility and outstanding magnetic properties and known to crystallographically align their magnetite NCs along the strongest <111> magnetization easy axis. Using electron holography (EH) and angular dependent magnetic measurements, the magnetic interaction between the NCs and the generation of a magnetically anisotropic material can be shown. The electro- and magnetostatic modeling demonstrates that in order to precisely determine the magnetization (by means of EH) inside chain-like NCs assemblies, their exact shape, arrangement and stray-fields have to be considered (ideally obtained using ET). © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim