Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Towards multiple readout application of plasmonic arrays

2011, Cialla, D., Weber, K., Böhme, R., Hübner, U., Schneidewind, H., Zeisberger, M., Mattheis, R., Möller, R., Popp, J.

In order to combine the advantages of fluorescence and surface-enhanced Raman spectroscopy (SERS) on the same chip platform, a nanostructured gold surface with a unique design, allowing both the sensitive detection of fluorescence light together with the specific Raman fingerprint of the fluorescent molecules, was established. This task requires the fabrication of plasmonic arrays that permit the binding of molecules of interest at different distances from the metallic surface. The most efficient SERS enhancement is achieved for molecules directly adsorbed on the metallic surface due to the strong field enhancement, but where, however, the fluorescence is quenched most efficiently. Furthermore, the fluorescence can be enhanced efficiently by careful adjustment of the optical behavior of the plasmonic arrays. In this article, the simultaneous application of SERS and fluorescence, through the use of various gold nanostructured arrays, is demonstrated by the realization of a DNA detection scheme. The results shown open the way to more flexible use of plasmonic arrays in bioanalytics.

Loading...
Thumbnail Image
Item

Autofluorescence guided welding of heart tissue by laser pulse bursts at 1550 nm

2020, Litvinova, Karina, Chernysheva, Maria, Stegemann, Berthold, Leyva, Francisco

Wound healing and other surgical technologies traditionally solved by suturing and stapling have recently been enhanced by the application of laser tissue welding. The usage of high energy laser radiation to anastomose tissues eliminates a foreign body reaction, reduces scar formation, and allows for the creation of watertight closure. In the current work, we show that an ultrafast pulsed fibre laser beam with 183 µJ·cm−2 energy fluence at 1550 nm provides successful welding of dissected chicken heart walls with the tensile strength of 1.03±0.12 kg·cm−2 equal to that of native tissue. The welding process was monitored employing fluorescence spectroscopy that detects the biochemical composition of tissues. We believe that fluorescence spectroscopy guided laser tissue welding is a promising approach for decreasing wound healing times and the avoiding risks of postoperative complications.

Loading...
Thumbnail Image
Item

On-chip fluorescence detection using photonic bandgap guiding optofluidic hollow-core light cage

2022, Kim, Jisoo, Jang, Bumjoon, Wieduwilt, Torsten, Warren-Smith, Stephen C., Bürger, Johannes, Maier, Stefan A., Schmidt, Markus A.

The on-chip detection of fluorescent light is essential for many bioanalytical and life-science related applications. Here, the optofluidic light cage consisting of a sparse array of micrometer encircling a hollow core represents an innovative concept, particularly for on-chip waveguide-based spectroscopy. In the present work, we demonstrate the potential of the optofluidic light cage concept in the context of integrated on-chip fluorescence spectroscopy. Specifically, we show that fluorescent light from a dye-doped aqueous solution generated in the core of a nanoprinted dual-ring light cage can be efficiently captured and guided to the waveguide ports. Notably, the fluorescence collection occurs predominantly in the fundamental mode, a property that distinguishes it from evanescent field-based waveguide detection schemes that favor collection in higher-order modes. Through exploiting the flexibility of waveguide design and 3D nanoprinting, both excitation and emission have been localized in the high transmission domains of the fundamental core mode. Fast diffusion, detection limits comparable to bulk measurements, and the potential of this approach in terms of device integration were demonstrated. Together with previous results on absorption spectroscopy, the achievements presented here suggest that the optofluidic light cage concept defines a novel photonic platform for integrated on-chip spectroscopic devices and real-time sensors compatible with both the fiber circuitry and microfluidics. Applications in areas such as bioanalytics and environmental sciences are conceivable, while more sophisticated applications such as nanoparticle tracking analysis and integrated Raman spectroscopy could be envisioned,