Search Results

Now showing 1 - 10 of 22
  • Item
    Ferroelectric switching in epitaxial GeTe films
    (New York : American Institute of Physics, 2014) Kolobov, A.V.; Kim, D.J.; Giussani, A.; Fons, P.; Tominaga, J.; Calarco, R.; Gruverman, A.
    In this paper, using a resonance-enhanced piezoresponse force microscopy approach supported by density functional theory computer simulations, we have demonstrated the ferroelectric switching in epitaxial GeTe films. It has been shown that in films with thickness on the order of several nanometers reversible reorientation of polarization occurs due to swapping of the shorter and longer Ge-Te bonds in the interior of the material. It is also hinted that for ultra thin films consisting of just several atomic layers weakly bonded to the substrate, ferroelectric switching may proceed through exchange of Ge and Te planes within individual GeTe layers.
  • Item
    High temperature behavior of rual thin films on piezoelectric CTGS and LGS substrates
    (Basel : MDPI AG, 2020) Seifert, M.
    This paper reports on a significant further improvement of the high temperature stability of RuAl thin films (110 nm) on the piezoelectric Ca3TaGa3Si2O14 (CTGS) and La3Ga5SiO14 (LGS) substrates. RuAl thin films with AlN or SiO2 cover layers and barriers to the substrate (each 20 nm), as well as a combination of both were prepared on thermally oxidized Si substrates, which serve as a reference for fundamental studies, and the piezoelectric CTGS, as well as LGS substrates. In somefilms, additional Al layers were added. To study their high temperature stability, the samples were annealed in air and in high vacuum up to 900 °C, and subsequently their cross-sections, phase formation, film chemistry, and electrical resistivity were analyzed. It was shown that on thermally oxidized Si substrates, all films were stable after annealing in air up to 800 °C and in high vacuum up to 900 °C. The high temperature stability of RuAl thin films on CTGS substrates was improved up to 900 °C in high vacuum by the application of a combined AlN/SiO2 barrier layer and up to 800 °C in air using a SiO2 barrier. On LGS, the films were only stable up to 600 °C in air; however, a single SiO2 barrier layer was sufficient to prevent oxidation during annealing at 900 °C in high vacuum.
  • Item
    Wafer-level uniformity of atomic-layer-deposited niobium nitride thin films for quantum devices
    (New York, NY : Inst., 2021) Knehr, Emanuel; Ziegler, Mario; Linzen, Sven; Ilin, Konstantin; Schanz, Patrick; Plentz, Jonathan; Diegel, Marco; Schmidt, Heidemarie; Il’iche, Evgeni; Siegel, Michael
    Superconducting niobium nitride thin films are used for a variety of photon detectors, quantum devices, and superconducting electronics. Most of these applications require highly uniform films, for instance, when moving from single-pixel detectors to arrays with a large active area. Plasma-enhanced atomic layer deposition (ALD) of superconducting niobium nitride is a feasible option to produce high-quality, conformal thin films and has been demonstrated as a film deposition method to fabricate superconducting nanowire single-photon detectors before. Here, we explore the property spread of ALD-NbN across a 6-in. wafer area. Over the equivalent area of a 2-in. wafer, we measure a maximum deviation of 1% in critical temperature and 12% in switching current. Toward larger areas, structural characterizations indicate that changes in the crystal structure seem to be the limiting factor rather than film composition or impurities. The results show that ALD is suited to fabricate NbN thin films as a material for large-area detector arrays and for new detector designs and devices requiring uniform superconducting thin films with precise thickness control.
  • Item
    Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films
    (New York, NY : American Inst. of Physics, 2016) Stiller, M.; Barzola-Quiquia, J.; Esquinazi, P.; Spemann, D.; Meijer, J.; Lorenz, M.; Grundmann, M.
    The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.
  • Item
    Analysis of electronic properties frommagnetotransport measurements on Ba(Fe1-xNix)2As2 thin films
    (Basel : MDPI AG, 2020) Shipulin, I.; Richter, S.; Thomas, A.A.; Nielsch, K.; Hühne, R.; Martovitsky, V.
    We performed a detailed structural, magnetotransport, and superconducting analysis of thin epitaxial Ba(Fe1-xNix)2As2 films with Ni doping of x = 0.05 and 0.08, as prepared by pulsed laser deposition. X-ray diffraction studies demonstrate the high crystalline perfection of the films, which have a similar quality to single crystals. Furthermore, magnetotransport measurements of the films were performed in magnetic fields up to 9 T. The results we used to estimate the density of electronic states at the Fermi level, the coefficient of electronic heat capacity, and other electronic parameters for this compound, in their dependence on the dopant concentration within the framework of the Ginzburg-Landau-Abrikosov-Gorkov theory. The comparison of the determined parameters with measurement data on comparable Ba(Fe1-xNix)2As2 single crystals shows good agreement, which confirms the high quality of the obtained films.
  • Item
    Incorporation of nitrogen into TiO2 thin films during PVD processes
    (Bristol : Institute of Physics Publishing, 2014) Asenova, I.; Manova, D.; Mändl, S.
    In this paper we investigate the possibility of incorporating nitrogen into amorphous, photocatalytic TiO2 thin films, prepared at room temperature, during the growth process. The aim is to reduce the bandgap of the UV active thin films. Physical vapor deposition experiments employing a titanium vacuum arc with gas backfill ranging from pure oxygen to pure nitrogen, are carried out. The resulting films are characterized for chemical composition, phase composition, optical properties and hydrophilicity in order to determine a correlation between gas composition and thin film properties. The experimental results point that a visible change in the band structure of the deposited layers is achieved.
  • Item
    Glow discharge optical emission spectrometry for quantitative depth profiling of CIGS thin-films
    (Cambridge : Royal Society of Chemistry, 2019) Kodalle, T.; Greiner, D.; Brackmann, V.; Prietzel, K.; Scheu, A.; Bertram, T.; Reyes-Figueroa, P.; Unold, T.; Abou-Ras, D.; Schlatmann, R.; Kaufmann, C.A.; Hoffmann, V.
    Determining elemental distributions dependent on the thickness of a sample is of utmost importance for process optimization in different fields e.g. from quality control in the steel industry to controlling doping profiles in semiconductor labs. Glow discharge optical emission spectrometry (GD-OES) is a widely used tool for fast measurements of depth profiles. In order to be able to draw profound conclusions from GD-OES profiles, one has to optimize the measurement conditions for the given application as well as to ensure the suitability of the used emission lines. Furthermore a quantification algorithm has to be implemented to convert the measured properties (intensity of the emission lines versus sputtering time) to more useful parameters, e.g. the molar fractions versus sample depth (depth profiles). In this contribution a typical optimization procedure of the sputtering parameters is adapted to the case of polycrystalline Cu(In,Ga)(S,Se)2 thin films, which are used as absorber layers in solar cell devices, for the first time. All emission lines used are shown to be suitable for the quantification of the depth profiles and a quantification routine based on the assumption of constant emission yield is used. The accuracy of this quantification method is demonstrated on the basis of several examples. The bandgap energy profile of the compound semiconductor, as determined by the elemental distributions, is compared to optical measurements. The depth profiles of Na-the main dopant in these compounds-are correlated with measurements of the open-circuit voltage of the corresponding devices, and the quantification of the sample depth is validated by comparison with profilometry and X-ray fluorescence measurements.
  • Item
    Epitaxial synthesis of unintentionally doped p-type SnO (001) via suboxide molecular beam epitaxy
    (Melville, NY : AIP, 2023) Egbo, Kingsley; Luna, Esperanza; Lähnemann, Jonas; Hoffmann, Georg; Trampert, Achim; Grümbel, Jona; Kluth, Elias; Feneberg, Martin; Goldhahn, Rüdiger; Bierwagen, Oliver
    By employing a mixed SnO2 + Sn source, we demonstrate suboxide molecular beam epitaxy (S-MBE) growth of phase-pure single-crystalline metastable SnO (001) thin films on Y-stabilized ZrO2 (001) substrates at a growth rate of ∼1.0 nm/min without the need for additional oxygen. These films grow epitaxially across a wide substrate temperature range from 150 to 450 °C. Hence, we present an alternative pathway to overcome the limitations of high Sn or SnO2 cell temperatures and narrow growth windows encountered in previous MBE growth of metastable SnO. In situ laser reflectometry and line-of-sight quadrupole mass spectrometry were used to investigate the rate of SnO desorption as a function of substrate temperature. While SnO ad-molecule desorption at TS = 450 °C was growth-rate limiting, the SnO films did not desorb at this temperature after growth in vacuum. The SnO (001) thin films are transparent and unintentionally p-type doped, with hole concentrations and mobilities in the range of 0.9-6.0 × 1018 cm-3 and 2.0-5.5 cm2 V-1 s-1, respectively. These p-type SnO films obtained at low substrate temperatures are promising for back-end-of-line (BEOL) compatible applications and for integration with n-type oxides in pn heterojunctions and field-effect transistors.
  • Item
    Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers
    (Bristol : Institute of Physics Publishing, 2019) Simmendinger, J.; Hanisch, J.; Bihler, M.; Ionescu, A.M.; Weigand, M.; Sieger, M.; Hühne, R.; Rijckaert, H.; Van Driessche, I.; Schütz, G.; Albrecht, J.
    We studied the impact of soft ferromagnetic permalloy (Py) on the shielding currents in a strong-pinning superconductor - YBa2Cu3O7-δ with Ba2Y(Nb/Ta)O6 nano-precipitates - by means of scanning transmission x-ray microscopy. Typically and in particular when in the thin film limit, superconductor/ferromagnet (SC/FM) bilayers exhibit isotropic properties of the flux line ensemble at all temperatures. However, in elements with small aspect ratio a significant anisotropy in flux penetration is observed. We explain this effect by local in-plane fields arising from anisotropic magnetic stray fields originated by the ferromagnet. This leads to direction-dependent motion of magnetic vortices inside the SC/FM bilayer. Our results demonstrate that small variations of the magnetic properties can have huge impact on the superconductor.
  • Item
    Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors
    (Washington, DC : Soc., 2021) Ruder, Alexander; Wright, Brandon; Feder, Rene; Kilic, Ufuk; Hilfiker, Matthew; Schubert, Eva; Herzinger, Craig M.; Schubert, Mathias
    We demonstrate calibration and operation of a Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors for polarization state generation and analysis. The mirrors contain highly spatially coherent nanostructure slanted columnar titanium thin films deposited onto optically thick titanium layers on quartz substrates. The first mirror acts as polarization state image generator and the second mirror acts as polarization state image detector. The instrument is calibrated using samples consisting of laterally homogeneous properties such as straight-through-air, a clear aperture linear polarizer, and a clear aperture linear retarder waveplate. Mueller matrix images are determined for spatially varying anisotropic samples consisting of a commercially available (Thorlabs) birefringent resolution target and a spatially patterned titanium slanted columnar thin film deposited onto a glass substrate. Calibration and operation are demonstrated at a single wavelength (530 nm) only, while, in principle, the instrument can operate regardless of wavelength. We refer to this imaging ellipsometry configuration as rotating-anisotropic-mirror-sample-rotating-anisotropic-mirror ellipsometry (RAM-S-RAM-E).