Search Results

Now showing 1 - 10 of 97
  • Item
    On the fundamental relation of laser schlieren deflectometry for temperature measurements in filamentary plasmas
    (Les Ulis : EDP Sciences, 2015) Schäfer, Jan; Bonaventura, Zdeněk; Foest, Rüdiger
    Recently, laser schlieren deflectometry (LSD) had been successfully employed as a temperature measurement method to reveal the heat convection generated by micro filaments of a self-organized non-thermal atmospheric plasma jet. Based on the theory of the temperature measurements using LSD, in this work, three approaches for an application of the method are introduced: (i) a hyperbolic-like model of refractive index is applied which allows an analytical theory for the evaluation of the deflection angle to be developed, (ii) a Gaussian shape model for the filament temperature is implemented which is analyzed numerically and (iii) an experimental calibration of the laser deflection with a gas mixture of helium and argon is performed. Thus, these approaches demonstrate that a universal relation between the relative maximum temperature of the filament core (T1/T0) and a the maximum deflection angle δ1 of the laser beam can be written as T1/T0=(1 − δ1/δ0)−1, where δ0 is a parameter that is defined by the configuration of the experiment and by the assumed model for the shape of the temperature profile.
  • Item
    Enhanced reliability of drift-diffusion approximation for electrons in fluid models for nonthermal plasmas
    (New York, NY : American Inst. of Physics, 2013) Becker, M.M.; Loffhagen, D.
    Common fluid models used for the description of electron transport in nonthermal discharge plasmas are subject to substantial restrictions if the electron energy transport significantly influences the discharge behaviour. A drift-diffusion approach is presented which is based on a multiterm approximation of the electron velocity distribution function and overcomes some of these restrictions. It is validated using a benchmark model and applied for the analysis of argon discharge plasmas at low and atmospheric pressure. The results are compared to those of common drift-diffusion models as well as to experimental data. It is pointed out that fluid models are able to describe nonlocal phenomena caused by electron energy transport, if the energy transport is consistently described. Numerical difficulties that frequently occur when the conventional drift-diffusion model is consistently applied are avoided by the proposed method.
  • Item
    Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure
    ([London] : IOP, 2015) Van Gaens, W.; Iseni, S.; Schmidt-Bleker, A.; Weltmann, K.-D.; Reuter, S.; Bogaerts, A.
    In this paper we study the cold atmospheric pressure plasma jet, called kinpen, operating in Ar with different admixture fractions up to 1% pure ${{{\rm N}}_{2}}$, ${{{\rm O}}_{2}}$ and ${{{\rm N}}_{2}}$ + ${{{\rm O}}_{2}}$. Moreover, the device is operating with a gas curtain of dry air. The absolute net production rates of the biologically active ozone (${{{\rm O}}_{3}}$) and nitrogen dioxide (${\rm N}{{{\rm O}}_{2}}$) species are measured in the far effluent by quantum cascade laser absorption spectroscopy in the mid-infrared. Additionally, a zero-dimensional semi-empirical reaction kinetics model is used to calculate the net production rates of these reactive molecules, which are compared to the experimental data. The latter model is applied throughout the entire plasma jet, starting already within the device itself. Very good qualitative and even quantitative agreement between the calculated and measured data is demonstrated. The numerical model thus yields very useful information about the chemical pathways of both the ${{{\rm O}}_{3}}$ and the ${\rm N}{{{\rm O}}_{2}}$ generation. It is shown that the production of these species can be manipulated by up to one order of magnitude by varying the amount of admixture or the admixture type, since this affects the electron kinetics significantly at these low concentration levels.
  • Item
    Particles as probes for complex plasmas in front of biased surfaces
    (College Park, MD : Institute of Physics Publishing, 2009) Basner, R.; Sigeneger, F.; Loffhagen, D.; Schubert, G.; Fehske, H.; Kersten, H.
    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles with the surrounding plasma for diagnostic purposes. Local electric fields can be determined from the behaviour of particles in the plasma, e.g. particles may serve as electrostatic probes. Since in many cases of applications in plasma technology it is of great interest to describe the electric field conditions in front of floating or biased surfaces, the confinement and behaviour of test particles is studied in front of floating walls inserted into a plasma as well as in front of additionally biased surfaces. For the latter case, the behaviour of particles in front of an adaptive electrode, which allows for an efficient confinement and manipulation of the grains, has been experimentally studied in terms of the dependence on the discharge parameters and on different bias conditions of the electrode. The effect of the partially biased surface (dc and rf) on the charged micro-particles has been investigated by particle falling experiments. In addition to the experiments, we also investigate the particle behaviour numerically by molecular dynamics, in combination with a fluid and particle-in-cell description of the plasma. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Analysis of Arc Processes in Multi-chamber Arrester for Lightning Protection at High-voltage Overhead Power Lines
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2017) Murashov, I.V.; Frolov, V.Y.; Uhrlandt, D.; Gortschakow, S.; Ivanov, D.V.; Sivaev, A.D.
    Nowadays multi-chamber arresters are widely distributed as devices of lightning protection of overhead power lines. A mathematical modelling of processes in the discharge chamber of multichamber arrester is necessary to carry out in order to improve its breaking capacity. A three-dimensional mathematical transient model of thermal, gas-dynamic and electromagnetic processes taking place in the discharge chamber of multi-chamber arrester is presented in the article. Basic assumptions, model equations, a computational domain and the boundary conditions are described. Plasma turbulence is taken into account. The results of the calculation i.e. distributions of plasma temperature and overpressure in the discharge chamber at different time points are shown. The analysis of the results was carried out. It is shown that the presence of cavities in the electrodes design promotes electric arc extinction in the discharge chamber of multi-chamber arrester.
  • Item
    Temperature and pressure profiles of an ablation-controlled arc plasma in air
    (Bristol : IOP Publ., 2019) Becerra, Marley; Pettersson, Jonas; Franke, Steffen; Gortschakow, Sergey
    Experimental measurements of the spatial distribution of temperature and composition of ablation-controlled arc plasmas are a key to validate the predictions of metal evaporation and polymer ablation models. Thus, high-speed photography and space-resolved spectroscopic measurements have been performed to characterize a stable air arc plasma jet controlled by ablation of a polymer nozzle made of Polyoxymethylene copolymer (POM-C) or polyamide (PA6). The spectroscopic analysis is performed along a plane perpendicular to the arc jet axis for a current of 1.8 kA, corresponding to an estimated current density of ~65 A mm-2. Temperature and partial pressure profiles of the plasma for copper, hydrogen and carbon in the gas mixture are estimated as an inverse optimization problem by using measured side-on radiance spectra and radiative transfer spectral simulations. It is shown that the generated ablation-controlled arc has a complicated, non-uniform gas composition. Thus, the generated arc jet has a thin metallic core with a lower almost constant hydrogen pressure, surrounded by a thicker hydrogen and carbon mantle at partial pressures slightly lower than atmospheric pressure. The separation of hydrogen and carbon in the core is a consequence of demixing of the polymer vapour in the plasma. It is found that the overall shape of the temperature and pressure profiles obtained for the arc plasmas with the POM-C and PA6 nozzles are similar although differ in peak values and width. © 2019 IOP Publishing Ltd.
  • Item
    High-Performance GaAs/AlAs Terahertz Quantum-Cascade Lasers for Spectroscopic Applications
    (New York, NY : IEEE, 2020) Schrottke, Lutz; Lü, Xiang; Röben, Benjamin; Biermann, Klaus; Hagelschuer, Till; Wienold, Martin; Hübers, Heinz-Wilhelm; Hannemann, Mario; van Helden, Jean-Pierre H.; Röpcke, Jürgen; Grahn, Holger T.
    We have developed terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures for application-defined emission frequencies between 3.4 and 5.0 THz. Due to their narrow line width and rather large intrinsic tuning range, these THz QCLs can be used as local oscillators in airborne or satellite-based astronomical instruments or as radiation sources for high-resolution absorption spectroscopy, which is expected to allow for a quantitative determination of the density of atoms and ions in plasma processes. The GaAs/AlAs THz QCLs can be operated in mechanical cryocoolers and even in miniature cryocoolers due to the comparatively high wall-plug efficiency of around 0.2% and typical current densities below 500 A/cm$^2$. These lasers emit output powers of more than 1 mW at operating temperatures up to about 70 K, which is sufficient for most of the abovementioned applications. © 2011-2012 IEEE.
  • Item
    Double-propagation mode in short-gap spark discharges driven by HV pulses with sub-ns rise time
    (Bristol : IOP Publ., 2020) Höft, H.; Becker, M.M.; Kolb, J.F.; Huiskamp, T.
    The object of this study is the investigation of spark discharges ignited by unipolar positive rectangular high voltage (HV) pulses with 200 ps rise time and (15 ± 2) kV amplitude with 3 ns duration full width at half maximum in synthetic air in a 1.2 mm pin-to-pin gap (tungsten electrodes) at atmospheric pressure. The discharge development was recorded by synchronised iCCD and streak camera measurements in single-shot operation, revealing a two-stage propagation mode. The discharge started with a fast initial breakdown across the entire gap (∼10 mm ns−1) during the HV slope, followed by a much slower (∼0.1 mm ns−1) propagation originating from both electrodes towards the gap centre. The combination of high-resolution diagnostics with numerical modelling indicated that the initial breakdown phase is caused by the rapid increase of electric field strength during the steep HV slope, which leads to the simultaneous fast propagation of a positive and a negative streamer.
  • Item
    Electric field determination in transient plasmas: in situ & non-invasive methods
    (Bristol : IOP Publ., 2022) Goldberg, Benjamin M.; Hoder, Tomáš; Brandenburg, Ronny
    One of the primary basic plasma parameters within transient nonequilibrium plasmas is the reduced electric field strength, roughly understood as the ratio of the electrical energy given to the charged species between two collisions. While physical probes have historically been used for electric field measurements, recent advances in high intensity lasers and sensitive detection methods have allowed for non-invasive optical electric field determination in nearly any discharge configuration with time-resolution up to the sub-nanosecond range and sub-millimeter spatial resolution. This topical review serves to highlight several non-invasive methods for in situ electric field strength determination in transient plasmas ranging from high vacuum environments to atmospheric pressure and above. We will discuss the advantages and proper implementation of (i) laser induced fluorescence dip spectroscopy for measurements in low pressure RF discharges, (ii) optical emission spectroscopy based methods for nitrogen, helium or hydrogen containing discharges, (iii) electric field induced coherent Raman scattering, and (iv) electric field induced second harmonic generation. The physical mechanism for each method will be described as well as basic implementation and highlighting recent results.
  • Item
    Spatio-temporal characterization of the multiple current pulse regime of diffuse barrier discharges in helium with nitrogen admixtures
    (Bristol : IOP Publ., 2017-09-20) Bogaczyk, Marc; Tschiersch, Robert; Nemschokmichal, Sebastian; Meichsner, Jürgen
    This work reports on the spatio-temporal characterization of the multiple current pulse regime of diffuse barrier discharges driven by sine-wave feeding voltage at a frequency of 2 kHz in helium with small nitrogen admixtures. The discharge gap of 3 mm is bounded by glass plates on both plane electrodes. Priority is given to the lateral discharge inhomogeneities, underlying volume- and surface-memory effects, and the breakdown mechanism. Therefore, relevant processes in the discharge volume and on the dielectric surfaces were investigated by ICCD camera imaging and optical emission spectroscopy in combination with electrical measurements and surface charge diagnostics using the electro-optic Pockels effect of a bismuth silicon oxide crystal. The number of current pulses per half-cycle of the sine-wave voltage rises with increasing nitrogen admixture to helium due to the predominant role of the Penning ionization. Here, the transition from the first glow-like breakdown to the last Townsend-like breakdown is favored by residual species from the former breakdowns which enhance the secondary electron emission during the pre-phase of the later breakdowns. Moreover, the surface charge measurements reveal that the consecutive breakdowns occur alternately at central and peripheral regions on the electrode surface. These spatial inhomogeneities are conserved by the surface charge memory effect as pointed out by the recalculated spatio-temporal development of the gap voltage.