Search Results

Now showing 1 - 9 of 9
  • Item
    X-ray spectroscopy of super-intense laser-produced plasmas for the study of nonlinear processes. Comparison with PIC simulations
    (Bristol : IOP Publ., 2017) Dalimier, E.; Ya Faenov, A.; Oks, E.; Angelo, P.; Pikuz, T.A.; Fukuda, Y.; Andreev, A.; Koga, J.; Sakaki, H.; Kotaki, H.; Pirozhkov, A.; Hayashi, Y.; Skobelev, I.Yu.; Pikuz, S.A.; Kawachi, T.; Kando, M.; Kondo, K.; Zhidkov, A.; Tubman, E.; Butler, N.M.H.; Dance, R.J.; Alkhimova, M.A.; Booth, N.; Green, J.; Gregory, C.; McKenna, P.; Woolsey, N.; Kodama, R.
    We present X-ray spectroscopic diagnostics in femto-second laser-driven experiments revealing nonlinear phenomena caused by the strong coupling of the laser radiation with the created plasma. Among those nonlinear phenomena, we found the signatures of the Two Plasmon Decay (TPD) instability in a laser-driven CO2 cluster-based plasma by analyzing the Langmuir dips in the profile of the O VIII Lyϵ line, caused by the Langmuir waves created at the high laser intensity 3 1018Wcm-2. With similar laser intensities, we reveal also the nonlinear phenomenon of the Second Harmonic Generation (SHG) of the laser frequency by analyzing the nonlinear phenomenon of satellites of Lyman δ and ϵ lines of Ar XVII. In the case of relativistic laser-plasma interaction we discovered the Parametric Decay Instability (PDI)-induced ion acoustic turbulence produced simultaneously with Langmuir waves via irradiation of thin Si foils by laser intensities of 1021Wcm-2.
  • Item
    A compact laboratory transmission X-ray microscope for the water window
    (Bristol : Institute of Physics Publishing, 2013) Legall, H.; Stiel, H.; Blobel, G.; Seim, C.; Baumann, J.; Yulin, S.; Esser, D.; Hoefer, M.; Wiesemann, U.; Wirtz, M.; Schneider, G.; Rehbein, S.; Hertz, H.M.
    In the water window (2.2-4.4 nm) the attenuation of radiation in water is significantly smaller than in organic material. Therefore, intact biological specimen (e.g. cells) can be investigated in their natural environment. In order to make this technique accessible to users in a laboratory environment a Full-Field Laboratory Transmission X-ray Microscope (L-TXM) has been developed. The L-TXM is operated with a nitrogen laser plasma source employing an InnoSlab high power laser system for plasma generation. For microscopy the Ly α emission of highly ionized nitrogen at 2.48 nm is used. A laser plasma brightness of 5 × 1011 photons/(s × sr × μm2 in line at 2.48 nm) at a laser power of 70 W is demonstrated. In combination with a state-of-the-art Cr/V multilayer condenser mirror the sample is illuminated with 106 photons/(μm2 × s). Using objective zone plates 35-40 nm lines can be resolved with exposure times < 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W. These exposure times enable cryo tomography in a laboratory environment.
  • Item
    Subwavelength population density gratings in resonant medium created by few-cycle pulses
    (Bristol : IOP Publ., 2017) Arkhipov, R.M.; Arkhipov, M.V.; Pakhomov, A.V.; Babushkin, I.; Demircan, A.; Morgner, U.; Rosanov, N.N.
    We consider theoretically recently proposed a new possibility of creation, erasing and ultrafast control of population density grating. Such grating can be created in resonant medium when ultrashort pulses with duration smaller than relaxation times in the resonant medium (coherent light matter interactions) propagate without overlapping in this medium. Possible applications in the ultrafast optics such as optical switcher and laser beam deflector are discussed.
  • Item
    Pentacene in 1,3,5-Tri(1-naphtyl)benzene: A Novel Standard for Transient EPR Spectroscopy at Room Temperature
    (Wien [u.a.] : Springer, 2021) Schröder, Mirjam; Rauber, Daniel; Matt, Clemens; Kay, Christopher W. M.
    Testing and calibrating an experimental setup with standard samples is an essential aspect of scientific research. Single crystals of pentacene in p-terphenyl are widely used for this purpose in transient electron paramagnetic resonance (EPR) spectroscopy. However, this sample is not without downsides: the crystals need to be grown and the EPR transitions only appear at particular orientations of the crystal with respect to the external magnetic field. An alternative host for pentacene is the glass-forming 1,3,5-tri(1-naphtyl)benzene (TNB). Due to the high glass transition point of TNB, an amorphous glass containing randomly oriented pentacene molecules is obtained at room temperature. Here we demonstrate that pentacene dissolved in TNB gives a typical “powder-like” transient EPR spectrum of the triplet state following pulsed laser excitation. From the two-dimensional data set, it is straightforward to obtain the zero-field splitting parameters and relative populations by spectral simulation as well as the B1 field in the microwave resonator. Due to the simplicity of preparation, handling and stability, this system is ideal for adjusting the laser beam with respect to the microwave resonator and for introducing students to transient EPR spectroscopy. © 2021, The Author(s).
  • Item
    Coupled mechanical oscillator enables precise detection of nanowire flexural vibrations
    (London : Springer Nature, 2023) Sharma, Maneesha; Sathyadharma Prasad, Aniruddha; Freitag, Norbert H.; Büchner, Bernd; Mühl, Thomas
    The field of nanowire (NW) technology represents an exciting and steadily growing research area with applications in ultra-sensitive mass and force sensing. Existing detection methods for NW deflection and oscillation include optical and field emission approaches. However, they are challenging for detecting small diameter NWs because of the heating produced by the laser beam and the impact of the high electric field. Alternatively, the deflection of a NW can be detected indirectly by co-resonantly coupling the NW to a cantilever and measuring it using a scanning probe microscope. Here, we prove experimentally that co-resonantly coupled devices are sensitive to small force derivatives similar to standalone NWs. We detect force derivatives as small as 10−9 N/m with a bandwidth of 1 Hz at room temperature. Furthermore, the measured hybrid vibration modes show clear signatures of avoided crossing. The detection technique presented in this work verifies a major step in boosting NW-based force and mass sensing.
  • Item
    Using the third state of matter: High harmonic generation from liquid targets
    (Bristol : IOP, 2014) Heissler, P.; Lugovoy, E.; Hörlein, R.; Waldecker, L.; Wenz, J.; Heigoldt, M.; Khrennikov, K.; Karsch, S.; Krausz, F.; Abel, B.; Tsakiris, G.D.
    High harmonic generation on solid and gaseous targets has been proven to be a powerful platform for the generation of attosecond pulses. Here we demonstrate a novel technique for the XUV generation on a smooth liquid surface target in vacuum, which circumvents the problem of low repetition rate and limited shot numbers associated with solid targets, while it maintains some of its merits. We employed atomically smooth, continuous liquid jets of water, aqueous salt solutions and ethanol that allow uninterrupted high harmonic generation due to the coherent wake emission mechanism for over 8 h. It has been found that the mechanism of plasma generation is very similar to that for smooth solid target surfaces. The vapor pressure around the liquid target in our setup has been found to be very low such that the presence of the gas phase around the liquid jet could be neglected.
  • Item
    Real-time spatial characterization of micrometer-sized X-ray free-electron laser beams focused by bendable mirrors
    (Washington, DC : Soc., 2022) Mercurio, Giuseppe; Chalupský, Jaromír; Nistea, Ioana-Theodora; Schneider, Michael; Hájková, Věra; Gerasimova, Natalia; Carley, Robert; Cascella, Michele; Le Guyader, Loïc; Mercadier, Laurent; Schlappa, Justine; Setoodehnia, Kiana; Teichmann, Martin; Yaroslavtsev, Alexander; Burian, Tomáš; Vozda, Vojtĕch; Vyšín, Luděk; Wild, Jan; Hickin, David; Silenzi, Alessandro; Stupar, Marijan; Torben Delitz, Jan; Broers, Carsten; Reich, Alexander; Pfau, Bastian; Eisebitt, Stefan; La Civita, Daniele; Sinn, Harald; Vannoni, Maurizio; Alcock, Simon G.; Juha, Libor; Scherz, Andreas
    A real-time and accurate characterization of the X-ray beam size is essential to enable a large variety of different experiments at free-electron laser facilities. Typically, ablative imprints are employed to determine shape and size of μm-focused X-ray beams. The high accuracy of this state-of-the-art method comes at the expense of the time required to perform an ex-situ image analysis. In contrast, diffraction at a curved grating with suitably varying period and orientation forms a magnified image of the X-ray beam, which can be recorded by a 2D pixelated detector providing beam size and pointing jitter in real time. In this manuscript, we compare results obtained with both techniques, address their advantages and limitations, and demonstrate their excellent agreement. We present an extensive characterization of the FEL beam focused to ≈1 μm by two Kirkpatrick-Baez (KB) mirrors, along with optical metrology slope profiles demonstrating their exceptionally high quality. This work provides a systematic and comprehensive study of the accuracy provided by curved gratings in real-time imaging of X-ray beams at a free-electron laser facility. It is applied here to soft X-rays and can be extended to the hard X-ray range. Furthermore, curved gratings, in combination with a suitable detector, can provide spatial properties of μm-focused X-ray beams at MHz repetition rate.
  • Item
    A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments
    (Melville, NY : American Institute of Physics, 2018) Ostermayr, T.M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.
    We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.
  • Item
    On the fundamental relation of laser schlieren deflectometry for temperature measurements in filamentary plasmas
    (Les Ulis : EDP Sciences, 2015) Schäfer, Jan; Bonaventura, Zdeněk; Foest, Rüdiger
    Recently, laser schlieren deflectometry (LSD) had been successfully employed as a temperature measurement method to reveal the heat convection generated by micro filaments of a self-organized non-thermal atmospheric plasma jet. Based on the theory of the temperature measurements using LSD, in this work, three approaches for an application of the method are introduced: (i) a hyperbolic-like model of refractive index is applied which allows an analytical theory for the evaluation of the deflection angle to be developed, (ii) a Gaussian shape model for the filament temperature is implemented which is analyzed numerically and (iii) an experimental calibration of the laser deflection with a gas mixture of helium and argon is performed. Thus, these approaches demonstrate that a universal relation between the relative maximum temperature of the filament core (T1/T0) and a the maximum deflection angle δ1 of the laser beam can be written as T1/T0=(1 − δ1/δ0)−1, where δ0 is a parameter that is defined by the configuration of the experiment and by the assumed model for the shape of the temperature profile.