Search Results

Now showing 1 - 6 of 6
  • Item
    Direct observation and simultaneous use of linear and quadratic electro-optical effects
    (Bristol : IOP Publ., 2020) Steglich, Patrick; Mai, Christian; Villringer, Claus; Mai, Andreas
    We report on the direct observation and simultaneous use of the linear and quadratic electro-optical effect and propose a method by which higher-order susceptibilities of electro-optical materials can be determined. The evaluation is based on the separation of the second- and third-order susceptibilities and the experimental technique uses a slot waveguide ring resonator fabricated in integrated photonic circuit technology, which is embedded by a guest-host polymer system consisting of the azobenzene dye Disperse Red 1 in a poly(methyl methacrylate) matrix as an active electro-optical material. The contribution of both effects on the electro-optical response under the influence of static and time-varying electrical fields is investigated. We show that the quadratic electro-optical effect has a significant influence on the overall electro-optical response even with acentric molecular orientated molecules. Our findings have important implications for developing electro-optical devices based on polymer-filled slot waveguides and give rise to advanced photonic circuits. © 2020 IOP Publishing Ltd.
  • Item
    High-performance SiGe HBTs for next generation BiCMOS technology
    (Bristol : IOP Publ., 2018) Rücker, Holger; Heinemann, Bernd
    This paper addresses fabrication aspects of SiGe heterojunction bipolar transistors which record high-speed performance. We previously reported fT values of 505 GHz, fMAX values of 720 GHz, and ring oscillator gate delays of 1.34 ps for these transistors. The impact of critical process steps on radio frequency performance is discussed. This includes millisecond annealing for enhanced dopant activation and optimization of the epitaxial growth process of the base layer. It is demonstrated that the use of a disilane precursor instead of silane can result in reduced base resistance and favorable device scalability.
  • Item
    Cross-polarization effects in sheared 2D grating couplers in a photonic BiCMOS technology
    (Bristol : IOP Publ., 2020) Georgieva, Galina; Voigt, Karsten; Mai, Christian; Seiler, Pascal M.; Petermann, Klaus; Zimmermann, Lars
    We investigate numerically and experimentally sheared 2D grating couplers in a photonic BiCMOS technology with a focus on their splitting behavior. Two realization forms of a waveguide-To-grating shear angle are considered. The cross-polarization used as a figure-of-merit is shown to be strongly dependent on the grating perturbation strength and is a crucial limitation not only for the grating splitting performance, but also for its coupling efficiency. © 2020 The Japan Society of Applied Physics.
  • Item
    Heteroepitaxy of group IV materials for future device application
    (Bristol : IOP Publ., 2023) Yamamoto, Yuji; Wen, Wei-Chen; Tillack, Bernd
    Heteroepitxy of group IV materials (Si, SiGe, and Ge) has great potential for boosting Si-based novel device performance because of the possibility for strain, band gap/Fermi-level engineering, and applying emerging artificial materials such as a superlattice (SL) and nanodots. In order to control group IV heteroepitaxy processes, strain, interface, and surface energies are very essential parameters. They affect dislocation formation, interface steepness, reflow of deposited layers, and also surface reaction itself during the growth. Therefore, process control and crystallinity management of SiGe heteroepitaxy are difficult especially in the case of high Ge concentrations. In this paper, we review our results of abrupt SiGe/Si interface fabrication by introducing C-delta layers and the influence of strain on the surface reaction of SiGe. Three-dimensional self-ordered SiGe and Ge nanodot fabrication by proactively using strain and surface energies by depositing SiGe/Si and Ge/SiGe SL are also reviewed.
  • Item
    Vertical alignment control of self-ordered multilayered Ge nanodots on SiGe
    (Bristol : IOP Publ., 2023) Wen, Wei-Chen; Schubert, Markus Andreas; Tillack, Bernd; Yamamoto, Yuji
    Self-ordered multilayered Ge nanodots with SiGe spacers on a Si0.4Ge0.6 virtual substrate are fabricated using reduced-pressure chemical vapor deposition, and the mechanism of vertical ordering is investigated. The process conditions of Ge and SiGe layer deposition are H2-GeH4 at 550 °C and H2-SiH4-GeH4 at 500 °C-550 °C, respectively. By depositing the SiGe at 550 °C or increasing Ge content, the SiGe surface becomes smooth, resulting in vertically aligned Ge nanodots to reduce strain energy. Ge nanodots prefer to grow on the nanodot where the SiGe is relatively tensile strained due to the buried Ge nanodot underneath. By depositing at 500 °C and lowering Ge content, checkerboard-like surface forms, and the following Ge nanodots grow at staggered positions to reduce surface energy. The Ge nanodots are laterally aligned along the elastically soft 〈100〉 direction without pre-structuring resulting from the strain distribution.
  • Item
    Ge(Sn) nano-island/Si heterostructure photodetectors with plasmonic antennas
    (Bristol : IOP Publ., 2020) Schlykow, Viktoria; Manganelli, Costanza Lucia; Römer, Friedhard; Clausen, Caterina; Augel, Lion; Schulze, Jörg; Katzer, Jens; Schubert, Michael Andreas; Witzigmann, Bernd; Schroeder, Thomas; Capellini, Giovanni; Fischer, Inga Anita
    We report on photodetection in deep subwavelength Ge(Sn) nano-islands on Si nano-pillar substrates, in which self-aligned nano-antennas in the Al contact metal are used to enhance light absorption by means of local surface plasmon resonances. The impact of parameters such as substrate doping and device geometry on the measured responsivities are investigated and our experimental results are supported by simulations of the three-dimensional distribution of the electromagnetic fields. Comparatively high optical responsivities of about 0.1 A W-1 are observed as a consequence of the excitation of localized surface plasmons, making our nano-island photodetectors interesting for applications in which size reduction is essential. © 2020 The Author(s). Published by IOP Publishing Ltd.