Search Results

Now showing 1 - 5 of 5
  • Item
    The ECOMA 2007 campaign: Rocket observations and numerical modelling of aerosol particle charging and plasma depletion in a PMSE/NLC layer
    (München : European Geopyhsical Union, 2009) Brattli, A.; Lie-Svendsen, Ø.; Svenes, K.; Hoppe, U.-P.; Strelnikova, I.; Rapp, M.; Latteck, R.; Torkar, K.; Gumbel, J.; Megner, L.; Baumgarten, G.
    The ECOMA series of rocket payloads use a set of aerosol particle, plasma, and optical instruments to study the properties of aerosol particles and their interaction with the ambient plasma environment in the polar mesopause region. In August 2007 the ECOMA-3 payload was launched into a region with Polar Mesosphere Summer Echoes (PMSE) and noctilucent clouds (NLC). An electron depletion was detected in a broad region between 83 and 88 km, coincident with enhanced density of negatively charged aerosol particles. We also find evidence for positive ion depletion in the same region. Charge neutrality requires that a population of positively charged particles smaller than 2 nm and with a density of at least 2×108 m−3 must also have been present in the layer, undetected by the instruments. A numerical model for the charging of aerosol particles and their interaction with the ambient plasma is used to analyse the results, showing that high aerosol particle densities are required in order to explain the observed ion density depletion. The model also shows that a very high photoionisation rate is required for the particles smaller than 2 nm to become positively charged, indicating that these may have a lower work function than pure water ice.
  • Item
    Wildfires as a source of airborne mineral dust - Revisiting a conceptual model using large-eddy simulation (LES)
    (Göttingen : Copernicus GmbH, 2018) Wagner, R.; Jähn, M.; Schepanski, K.
    Airborne mineral dust is a key player in the Earth system and shows manifold impacts on atmospheric properties such as the radiation budget and cloud microphysics. Investigations of smoke plumes originating from wildfires found significant fractions of mineral dust within these plumes - most likely raised by strong, turbulent fire-related winds. This study presents and revisits a conceptual model describing the emission of mineral dust particles during wildfires. This is achieved by means of high-resolution large-eddy simulation (LES), conducted with the All Scale Atmospheric Model (ASAM). The impact of (a) different fire properties representing idealized grassland and shrubland fires, (b) different ambient wind conditions modulated by the fire's energy flux, and (c) the wind's capability to mobilize mineral dust particles was investigated. Results from this study illustrate that the energy release of the fire leads to a significant increase in near-surface wind speed, which consequently enhances the dust uplift potential. This is in particular the case within the fire area where vegetation can be assumed to be widely removed and uncovered soil is prone to wind erosion. The dust uplift potential is very sensitive to fire properties, such as fire size, shape, and intensity, but also depends on the ambient wind velocity. Although measurements already showed the importance of wildfires for dust emissions, pyro-convection is so far neglected as a dust emission process in atmosphere-aerosol models. The results presented in this study can be seen as the first step towards a systematic parameterization representing the connection between typical fire properties and related dust emissions.
  • Item
    Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007
    (München : European Geopyhsical Union, 2008) Belova, A.; Kirkwood, S.; Murtagh, D.; Mitchell, N.; Singer, W.; Hocking, W.
    A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE) at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976) do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005) that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration) using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.
  • Item
    Combining cloud radar and radar wind profiler for a value added estimate of vertical air motion and particle terminal velocity within clouds
    (Göttingen : Copernicus GmbH, 2018) Radenz, M.; Bühl, J.; Lehmann, V.; Görsdorf, U.; Leinweber, R.
    Vertical-stare observations from a 482MHz radar wind profiler and a 35GHz cloud radar are combined on the level of individual Doppler spectra to measure vertical air motions in clear air, clouds and precipitation. For this purpose, a separation algorithm is proposed to remove the influence of falling particles from the wind profiler Doppler spectra and to calculate the terminal fall velocity of hydrometeors. The remaining error of both vertical air motion and terminal fall velocity is estimated to be better than 0.1ms-1 using numerical simulations. This combination of instruments allows direct measurements of in-cloud vertical air velocity and particle terminal fall velocity by means of ground-based remote sensing. The possibility of providing a profile every 10s with a height resolution of < 100m allows further insight into the process scale of in-cloud dynamics. The results of the separation algorithm are illustrated by two case studies, the first covering a deep frontal cloud and the second featuring a shallow mixed-phase cloud.
  • Item
    Bistable systems with stochastic noise: Virtues and limits of effective one-dimensional Langevin equations
    (Göttingen : Copernicus GmbH, 2012) Lucarini, V.; Faranda, D.; Willeit, M.
    The understanding of the statistical properties and of the dynamics of multistable systems is gaining more and more importance in a vast variety of scientific fields. This is especially relevant for the investigation of the tipping points of complex systems. Sometimes, in order to understand the time series of given observables exhibiting bimodal distributions, simple one-dimensional Langevin models are fitted to reproduce the observed statistical properties, and used to investing-ate the projected dynamics of the observable. This is of great relevance for studying potential catastrophic changes in the properties of the underlying system or resonant behaviours like those related to stochastic resonance-like mechanisms. In this paper, we propose a framework for encasing this kind of studies, using simple box models of the oceanic circulation and choosing as observable the strength of the thermohaline circulation. We study the statistical properties of the transitions between the two modes of operation of the thermohaline circulation under symmetric boundary forcings and test their agreement with simplified one-dimensional phenomenological theories. We extend our analysis to include stochastic resonance-like amplification processes. We conclude that fitted one-dimensional Langevin models, when closely scrutinised, may result to be more ad-hoc than they seem, lacking robustness and/or well-posedness. They should be treated with care, more as an empiric descriptive tool than as methodology with predictive power.