Search Results

Now showing 1 - 2 of 2
  • Item
    Looking into CALIPSO climatological products: Evaluation and suggestions from EARLINET
    (Les Ulis : EDP Sciences, 2016) Papagiannopoulos, Nikolaos; Mona, Lucia; Alados-Alboledas, Lucas; Amiridis, Vassilis; Bortoli, Daniele; D’Amico, Giuseppe; Costa, Maria Joao; Pereira, Sergio; Spinelli, Nicola; Wandinger, Ulla Wandinger; Pappalardo, Gelsomina
    CALIPSO (Cloud-Aerosol Lidar and Pathfinder Satellite Observations) Level 3 (CL3) data were compared against EARLINET (European Aerosol Research Lidar Network) monthly averages obtained by profiles during satellite overpasses. Data from EARLINET stations of Évora, Granada, Leipzig, Naples and Potenza, equipped with advanced multi-wavelength Raman lidars were used for this study. Owing to spatial and temporal differences, we reproduced the CL3 filtering rubric onto the CALIPSO Level 2 data. The CALIPSO monthly mean profiles following this approach are called CALIPSO Level 3*, CL3*. This offers the possibility to achieve direct comparable datasets. In respect to CL3 data, the agreement typically improved, in particular above the areas directly affected by the anthropogenic activities within the planetary boundary layer. However in most of the cases a subtle CALIPSO underestimation was observed with an average bias of 0.03 km-1. We investigated the backscatter coefficient applying the same screening criteria, where the mean relative difference in respect to the extinction comparison improved from 15.2% to 11.4%. Lastly, the typing capabilities of CALIPSO were assessed outlining the importance of the correct aerosol type (and associated lidar ratio value) assessment to the CALIPSO aerosol properties retrieval.
  • Item
    Continuous time series of water vapor profiles from a combination of Raman lidar and microwave radiometer
    (Les Ulis : EDP Sciences, 2016) Foth, Andreas; Baars, Holger; Di Girolamo, Paolo; Pospichal, Bernhard
    In this paper, we present a method to retrieve continuous water vapor profiles from a combination of a Raman lidar and a microwave radiometer. The integrated water vapor from the microwave radiometer is used to calibrate the Raman lidar operationally resulting in small biases compared to radiosondes. The height limitations for Raman lidars (cloud base and daylight contamination) can be well compensated by the application of a two–step algorithm combining the Raman lidars mass mixing ratio and the microwave radiometers brightness temperatures.