Search Results

Now showing 1 - 3 of 3
  • Item
    Emission Manipulation by DNA Origami‐Assisted Plasmonic Nanoantennas
    (Weinheim : Wiley-VCH, 2021) Yeşilyurt, Ayşe Tuğça Mina; Huang, Jer‐Shing
    Plasmonic nanoantennas mediate far and near optical fields and confine the light to subwavelength dimensions. The spatial organization of nanoantenna elements is critical as it affects the interelement coupling and determines the resultant antenna mode. To couple quantum emitters to optical antennas, high precision on the order of a few nm with respect to the antenna is necessary. As an emerging nanofabrication technique, DNA origami has proven itself to be a robust nanobreadboard to obtain sub-5 nm positioning precision for a diverse range of materials. Eliminating the need for expensive state-of-the-art top-down fabrication facilities, DNA origami enables cost-efficient implementation of nanoscale architectures, including novel nanoantennas. The ability of DNA origami to deterministically position single quantum emitters into nanoscale hotspots further boosts the efficiency of light–matter interaction controlled via optical antennas. This review recapitulates the recent progress in plasmonic nanoantennas assisted by DNA origami and focuses on their various configurations. How those nanoantennas act on the emission and absorption properties of quantum emitters positioned in the hotspots is explicitly discussed. In the end, open challenges are outlined and future possibilities lying ahead are pointed out for this powerful triad of biotechnology, nanooptics, and photophysics. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Near-field interference map due to a dipolar emission near the edge of a monocrystalline gold platelet
    (Bristol : IOP Publ., 2022) Abbasirad, N.; Barreda, A.; Arslan, D.; Steinert, M.; Chen, Y.-J.; Huang, J.-S.; Staude, I.; Setzpfandt, F.; Pertsch, T.
    Point source excitation and point detection in the near-field provides new perspective to study the near-field optical phenomena of plasmonic nanostructures. Using the automated dual-tip scanning near-field optical microscope (SNOM), we have measured the optical near-field response of a dipolar emission near the edge of a monocrystalline gold platelet. The image dipole method was used to analytically calculate the interference pattern due to surface plasmon polaritons excited at the position of aperture tip and those reflected from edges of the gold platelet. The near-field enhancement was observed on the edges of the gold platelet. Our results verify that automated dual-tip SNOM is an intriguing technique for quantum plasmonic studies where deterministic coupling of quantum emitters and the detection of the near-field enhancement are of great interest.
  • Item
    Periodic array-based substrates for surface-enhanced infrared spectroscopy
    (Berlin : de Gruyter, 2017-7-29) Mayerhöfer, Thomas G.; Popp, Jürgen
    At the beginning of the 1980s, the first reports of surface-enhanced infrared spectroscopy (SEIRS) surfaced. Probably due to signal-enhancement factors of only 101 to 103, which are modest compared to those of surface-enhanced Raman spectroscopy (SERS), SEIRS did not reach the same significance up to date. However, taking the compared to Raman scattering much larger cross-sections of infrared absorptions and the enhancement factors together, SEIRS reaches about the same sensitivity for molecular species on a surface in terms of the cross-sections as SERS and, due to the complementary nature of both techniques, can valuably augment information gained by SERS. For the first 20 years since its discovery, SEIRS relied completely on metal island films, fabricated by either vapor or electrochemical deposition. The resulting films showed a strong variance concerning their structure, which was essentially random. Therefore, the increase in the corresponding signal-enhancement factors of these structures stagnated in the last years. In the very same years, however, the development of periodic array-based substrates helped SEIRS to gather momentum. This development was supported by technological progress concerning electromagnetic field solvers, which help to understand plasmonic properties and allow targeted design. In addition, the strong progress concerning modern fabrication methods allowed to implement these designs into practice. The aim of this contribution is to critically review the development of these engineered surfaces for SEIRS, to compare the different approaches with regard to their performance where possible, and report further gain of knowledge around and in relation to these structures.