Search Results

Now showing 1 - 2 of 2
  • Item
    Promoting access to and use of seismic data in a large scientific community
    (Les Ulis : EDP Sciences, 2017) Michel, Eric; Belkacem, Kevin; Samadi, Reza; de Assis Peralta, Raphael; Renié, Christian; Abed, Mahfoudh; Lin, Guangyuan; Christensen-Dalsgaard, Jørgen; Houdek, Günter; Handberg, Rasmus; Gizon, Laurent; Burston, Raymond; Nagashima, Kaori; Pallé, Pere; Poretti, Ennio; Rainer, Monica; Mistò, Angelo; Panzera, Maria Rosa; Roth, Markus; Monteiro, Mário J. P. F. G.; Cunha, Margarida S.; Ferreira, João Miguel T. S.
    The growing amount of seismic data available from space missions (SOHO, CoRoT, Kepler, SDO,…) but also from ground-based facilities (GONG, BiSON, ground-based large programmes…), stellar modelling and numerical simulations, creates new scientific perspectives such as characterizing stellar populations in our Galaxy or planetary systems by providing model-independent global properties of stars such as mass, radius, and surface gravity within several percent accuracy, as well as constraints on the age. These applications address a broad scientific community beyond the solar and stellar one and require combining indices elaborated with data from different databases (e.g. seismic archives and ground-based spectroscopic surveys). It is thus a basic requirement to develop a simple and effcient access to these various data resources and dedicated tools. In the framework of the European project SpaceInn (FP7), several data sources have been developed or upgraded. The Seismic Plus Portal has been developed, where synthetic descriptions of the most relevant existing data sources can be found, as well as tools allowing to localize existing data for given objects or period and helping the data query. This project has been developed within the Virtual Observatory (VO) framework. In this paper, we give a review of the various facilities and tools developed within this programme. The SpaceInn project (Exploitation of Space Data for Innovative Helio- and Asteroseismology) has been initiated by the European Helio- and Asteroseismology Network (HELAS).
  • Item
    The PAC2MAN mission: A new tool to understand and predict solar energetic events
    (Les Ulis : EDP Sciences, 2015) Amaya, Jorge; Musset, Sophie; Andersson, Viktor; Diercke, Andrea; Höller, Christian; Iliev, Sergiu; Juhász, Lilla; Kiefer, René; Lasagni, Riccardo; Lejosne, Solène; Madi, Mohammad; Rummelhagen, Mirko; Scheucher, Markus; Sorba, Arianna; Thonhofer, Stefan
    An accurate forecast of flare and coronal mass ejection (CME) initiation requires precise measurements of the magnetic energy buildup and release in the active regions of the solar atmosphere. We designed a new space weather mission that performs such measurements using new optical instruments based on the Hanle and Zeeman effects. The mission consists of two satellites, one orbiting the L1 Lagrangian point (Spacecraft Earth, SCE) and the second in heliocentric orbit at 1AU trailing the Earth by 80° (Spacecraft 80, SC80). Optical instruments measure the vector magnetic field in multiple layers of the solar atmosphere. The orbits of the spacecraft allow for a continuous imaging of nearly 73% of the total solar surface. In-situ plasma instruments detect solar wind conditions at 1AU and ahead of our planet. Earth-directed CMEs can be tracked using the stereoscopic view of the spacecraft and the strategic placement of the SC80 satellite. Forecasting of geoeffective space weather events is possible thanks to an accurate surveillance of the magnetic energy buildup in the Sun, an optical tracking through the interplanetary space, and in-situ measurements of the near-Earth environment.