Search Results

Now showing 1 - 2 of 2
  • Item
    An engineered coccolith-based hybrid that transforms light into swarming motion
    (Maryland Heights, MO : Cell Press, 2021) Lomora, Mihai; LarraƱaga, Aitor; Rodriguez-Emmenegger, Cesar; Rodriguez, Brian; Dinu, Ionel Adrian; Sarasua, Jose-Ramon; Pandit, Abhay
    Translating energy into swarming motion for miniature entities remains a challenge. This translation requires simultaneously breaking the symmetry of the system to enable locomotion and a coupling effect between the objects that are part of the population to induce the collective motion. Here, we report on Robocoliths, engineered Emiliania huxleyi (EHUX) coccolith-based miniature hybrid entities capable of swarming behavior. EHUX coccoliths are characterized by an asymmetric morphology that allows breaking symmetry, playing a central role in generating a net force and directed motion. Their activation with the bioinspired material polydopamine not only endows the asymmetric coccoliths with advanced functionalities, such as thermal- and energy-harvesting responsiveness under visible light exposure to display a collective behavior (i.e., swarming), but it also provides a functional surface from which antifouling polymer brushes are grown. In this context, Robocoliths pave the way for the next generation of multifunctional swarming bio-micromachines. Ā© 2021 The Author(s)Establishment of controlled nano- and mesoscopic energized entities that gather, in a concerted effort, into motile aggregated patterns is at the forefront of scientific discovery. Lomora et al. report on coccolith-polydopamine hybrids (Robocoliths) that heat and move collectively upon light excitation and accommodate antifouling brushes on their surface. Ā© 2021 The Author(s)
  • Item
    Engineered living hydrogels for robust biocatalysis in pure organic solvents
    (Maryland Heights, MO : Cell Press, 2022) Gao, Liang; Feng, Lilin; Sauer, Daniel F.; Wittwer, Malte; Hu, Yong; Schiffels, Johannes; Li, Xin
    Engineered living hydrogels that can protect cells from harsh environments have achieved preliminary successes in biomedicine and environmental remediation. However, their biocatalytic applications in pure organic solvents have not been explored. Here, living hydrogels were engineered by integrating genetically modified Escherichia coli cells into alginate hydrogels for robust biocatalysis in pure organic solvents. The biocompatible hydrogels could not only support cell growth and diminish cell escape but could also act as protective matrices to improve organic solvent tolerance, thereby prolonging catalytic activity of whole-cell biocatalysts. Moreover, the influence of hydrogel microenvironments on biocatalytic efficiency was thoroughly investigated. Importantly, the versatility of engineered living hydrogels paves the way to achieve robust biocatalytic efficiency in a variety of pure organic co-solvents. Overall, we are able to engineer living hydrogels for regio-selective synthesis in pure organic solvents, which may be particularly useful for the innovation of living hydrogels in biocatalysis.