Search Results

Now showing 1 - 5 of 5
  • Item
    Switchable adhesion in vacuum using bio-inspired dry adhesives
    (Washington D.C. : American Chemical Society, 2015) Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar
    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.
  • Item
    New insights into the structure of nanoporous carbons from NMR, Raman, and pair distribution function analysis
    (Washington D.C. : American Chemical Society, 2015) Forse, Alexander C.; Merlet, Céline; Allan, Phoebe K.; Humphreys, Elizabeth K.; Griffin, John M.; Aslan, Mesut; Zeiger, Marco; Presser, Volker; Gogotsi, Yury; Grey, Clare P.
    The structural characterization of nanoporous carbons is a challenging task as they generally lack long-range order and can exhibit diverse local structures. Such characterization represents an important step toward understanding and improving the properties and functionality of porous carbons, yet few experimental techniques have been developed for this purpose. Here we demonstrate the application of nuclear magnetic resonance (NMR) spectroscopy and pair distribution function (PDF) analysis as new tools to probe the local structures of porous carbons, alongside more conventional Raman spectroscopy. Together, the PDFs and the Raman spectra allow the local chemical bonding to be probed, with the bonding becoming more ordered for carbide-derived carbons (CDCs) synthesized at higher temperatures. The ring currents induced in the NMR experiment (and thus the observed NMR chemical shifts for adsorbed species) are strongly dependent on the size of the aromatic carbon domains. We exploit this property and use computer simulations to show that the carbon domain size increases with the temperature used in the carbon synthesis. The techniques developed here are applicable to a wide range of porous carbons and offer new insights into the structures of CDCs (conventional and vacuum-annealed) and coconut shell-derived activated carbons.
  • Item
    Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy
    (Washington D.C. : American Chemical Society, 2015) Verch, Andreas; Pfaff, Marina; de Jong, Niels
    Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid.
  • Item
    Self-assembly of gold nanoparticles at the oil-vapor interface: from mono- to multilayers
    (Washington D.C. : American Chemical Society, 2014) Born, Philip; Schön, Volker; Blum, Susanne; Gerstner, Dominik; Huber, Patrick; Kraus, Tobias
    Alkylthiol-coated gold nanoparticles spontaneously segregate from dispersion in toluene to the toluene-vapor interface. We show that surface tension drops during segregation with a rate that depends on particle concentration. Mono- and multilayers of particles form depending on particle concentration, time, and temperature. X-ray reflectometry indicates fast monolayer formation and slow multilayer formation. A model that combines diffusion-limited segregation driven by surface energy and heterogeneous agglomeration driven by dispersive van der Waals particle interactions is proposed to describe film formation.
  • Item
    Dense arrays of uniform submicron pores in silicon and their applications
    (Washington D.C. : American Chemical Society, 2015) Brodoceanu, Daniel; Elnathan, Roey; Prieto-Simón, Beatriz; Delalat, Bahman; Guinan, Taryn M.; Kroner, Elmar Karsten; Voelcker, Nicolas H.; Kraus, Tobias
    We report a versatile particle-based route to dense arrays of parallel submicron pores with high aspect ratio in silicon, and explore the application of these arrays in sensors, optics, and polymer micropatterning. Polystyrene (PS) spheres are convectively assembled on gold-coated silicon wafers and sputter-etched, resulting in well-defined gold disc arrays with excellent long-range order. The gold discs act as catalysts in Metal-Assisted Chemical Etching (MACE), yielding uniform pores with straight walls, flat bottoms and high aspect ratio. The resulting pore arrays can be used as robust antireflective surfaces, in biosensing applications, and as templates for polymer replica molding.