Search Results

Now showing 1 - 4 of 4
  • Item
    Molecular Beam Epitaxy Growth and Characterization of Germanium-Doped Cubic AlxGa1−xN
    (Weinheim : Wiley-VCH, 2020) Deppe, Michael; Henksmeier, Tobias; Gerlach, Jürgen W.; Reuter, Dirk; As, Donat J.
    In cubic (c-)GaN Ge has emerged as a promising alternative to Si for n-type doping, offering the advantage of slightly improved electrical properties. Herein, a study on Ge doping of the ternary alloy c-AlxGa1−xN is presented. Ge-doped c-AlxGa1−xN layers are grown by plasma-assisted molecular beam epitaxy. In two sample series, both the Al mole fraction x and the doping level are varied. The incorporation of Ge is verified by time-of-flight secondary ion mass spectrometry. Ge incorporation and donor concentrations rise exponentially with increasing Ge cell temperature. A maximum donor concentration of 1.4 × 1020 cm−3 is achieved. While the incorporation of Ge is almost independent of x, incorporation of O, which acts as an unintentional donor, increases for higher x. Dislocation densities start increasing when doping levels of around 3 × 1019 cm−3 are exceeded. Also photoluminescence intensities begin to drop at these high doping levels. Optical emission of layers with x > 0.25 is found to originate from a defect level 0.9 eV below the indirect bandgap, which is not related to Ge. In the investigated range 0 ≤ x ≤ 0.6, Ge is a suitable donor in c-AlxGa1−xN up to the low 1019 cm−3 range.
  • Item
    Status and Prospects of AlN Templates on Sapphire for Ultraviolet Light-Emitting Diodes
    (Weinheim : Wiley-VCH, 2020) Hagedorn, Sylvia; Walde, Sebastian; Knauer, Arne; Susilo, Norman; Pacak, Daniel; Cancellara, Leonardo; Netzel, Carsten; Mogilatenko, Anna; Hartmann, Carsten; Wernicke, Tim; Kneissl, Michael; Weyers, Markus
    Herein, the scope is to provide an overview on the current status of AlN/sapphire templates for ultraviolet B (UVB) and ultraviolet C (UVC) light-emitting diodes (LEDs) with focus on the work done previously. Furthermore, approaches to improve the properties of such AlN/sapphire templates by the combination of high-temperature annealing (HTA) and patterned AlN/sapphire interfaces are discussed. While the beneficial effect of HTA is demonstrated for UVC LEDs, the growth of relaxed AlGaN buffer layers on HTA AlN is a challenge. To achieve relaxed AlGaN with a low dislocation density, the applicability of HTA for AlGaN is investigated. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    High-Temperature Annealing of AlGaN
    (Weinheim : Wiley-VCH, 2020) Hagedorn, Sylvia; Khan, Taimoor; Netzel, Carsten; Hartmann, Carsten; Walde, Sebastian; Weyers, Markus
    In the past few years, high-temperature annealing of AlN has become a proven method for providing AlN layers with low dislocation densities. Herein, the example of Al0.77Ga0.23N is used to investigate whether annealing can also improve the material quality of the ternary alloy. A detailed analysis of the influence of annealing temperature on structural and optical material properties is presented. It is found that with increasing annealing temperature, the threading dislocation density can be lowered from an initial value of 6.0 × 109 down to 2.6 × 109 cm−2. Ga depletion at the AlGaN surface and Ga diffusion into the AlN buffer layer are observed. After annealing, the defect luminescence between 3 and 4 eV is increased, accompanied by an increase in the oxygen concentration by about two orders of magnitude. Furthermore, due to annealing optical absorption at 325 nm (3.8 eV) occurs, which increases with increasing annealing temperature. It is assumed that the reason for this decrease in ultraviolet (UV) transmittance is the increasing number of vacancies caused by the removal of group-III and N atoms from the AlGaN lattice during annealing.
  • Item
    Temperature Dependence of Dark Spot Diameters in GaN and AlGaN
    (Weinheim : Wiley-VCH, 2021) Netzel, Carsten; Knauer, Arne; Brunner, Frank; Mogilatenko, Anna; Weyers, Markus
    Threading dislocations in c-plane (Al,Ga)N layers are surrounded by areas with reduced light generation efficiency, called “dark spots.” These areas are observable in luminescence measurements with spatial resolution in the submicrometer range. Dark spots reduce the internal quantum efficiency in single layers and light-emitting devices. In cathodoluminescence measurements, the diameter of dark spots (full width at half maximum [FWHM]) is observed to be 200–250 nm for GaN. It decreases by 30–60% for AlxGa1−xN with x ≈ 0.5. Furthermore, the dark spot diameter increases with increasing temperature from 83 to 300 K in AlGaN, whereas it decreases in GaN. Emission energy mappings around dark spots become less smooth and show sharper features on submicrometer scales at low temperature for AlGaN and, on the contrary, at high temperature for GaN. It is concluded that charge carrier localization dominates the temperature dependence of dark spot diameters and of the emission energy distribution around threading dislocations in AlGaN, whereas the temperature-dependent excitation volume in cathodoluminescence and charge carrier diffusion limited by phonon scattering are the dominant effects in GaN. Consequently, with increasing temperature, nonradiative recombination related to threading dislocations extends to wider regions in AlGaN, whereas it becomes spatially limited in GaN.