Search Results

Now showing 1 - 4 of 4
  • Item
    Stable coherent mode-locking based on π pulse formation in single-section lasers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arkhipov, Rostislav; Pakhomov, Anton; Arkhipov, Mikhail; Babushkin, Ihar; Rosanov, Nikolay
    Here we consider coherent mode-locking (CML) regimes in single-section cavity lasers, taking place for pulse durations less than atomic population and phase relaxation times, which arise due to coherent Rabi oscillations of the atomic inversion. Typically, CML is introduced for lasers with two sections, the gain and absorber ones. Here we show that, for certain combination of the cavity length and relaxation parameters, a very stable CML in a laser, containing only gain section, may arise. The mode-locking is unconditionally self-starting and appears due to balance of intra-pulse de-excitation and slow interpulse-scale pump-induced relaxation processes. We also discuss the scaling of the system to shorter pulse durations, showing a possibility of mode-locking for few-cycle pulses.
  • Item
    Direct measurement of Coulomb-laser coupling
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Azoury, Doron; Krüger, Michael; Bruner, Barry D.; Smirnova, Olga; Dudovich, Nirit
    The Coulomb interaction between a photoelectron and its parent ion plays an important role in a large range of light-matter interactions. In this paper we obtain a direct insight into the Coulomb interaction and resolve, for the first time, the phase accumulated by the laser-driven electron as it interacts with the Coulomb potential. Applying extreme-ultraviolet interferometry enables us to resolve this phase with attosecond precision over a large energy range. Our findings identify a strong laser-Coulomb coupling, going beyond the standard recollision picture within the strong-field framework. Transformation of the results to the time domain reveals Coulomb-induced delays of the electrons along their trajectories, which vary by tens of attoseconds with the laser field intensity.
  • Item
    Elliptically polarized high-harmonic radiation for production of isolated attosecond pulses
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Bengs, Ulrich; Zhavoronkov, Nickolai
    Circularly polarized attosecond pulses are powerful tool to study chiral light-matter interaction via chiral electron dynamics. However, access to isolated circularly polarized attosecond pulses enabling straightforward interpretation of measurements, still remains a challenge. In this work, we experimentally demonstrate the generation of highly elliptically polarized high-harmonics in a two-color, bi-circular, collinear laser field. The intensity and shape of the combined few-cycle driving radiation is optimized to produce a broadband continuum with enhanced spectral chirality in the range of 15-55 eV supporting the generation of isolated attosecond pulses with duration down to 150 as. We apply spectrally resolved polarimetry to determine the full Stokes vector of different spectral components of the continuum, yielding a homogenous helicity distribution with ellipticity in the range of 0.8-0.95 and a negligible unpolarized content.
  • Item
    Observation of direction instability in a fiber ring laser
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arshad, Muhammad Assad; Hartung, Alexander; Pratiwi, Arni Candra; Jäger, Matthias
    We report on the observation of a new phenomenon occurring in a fiber ring laser. This phenomenon is about the transition from an initially bidirectional emission of a reciprocal fiber ring laser to a unidirectional emission at a certain pump power threshold. In addition, the final direction is not predefined but appears to be randomly chosen every time the threshold is exceeded. Therefore, we term this new phenomenon direction instability. Furthermore, we provide a first discussion of how the instability threshold is influenced by the length and the loss of the cavity. We show that the threshold follows a power times length scaling, indicating a nonlinear origin.