Search Results

Now showing 1 - 2 of 2
  • Item
    Microwave plasma discharges for biomass pretreatment: Degradation of a sodium carboxymethyl cellulose model
    (New York, NY : American Inst. of Physics, 2020) Honnorat, B.; Brüser, V.; Kolb, J.F.
    Biogas production is an important component of an environmentally benign renewable energy strategy. However, the cost-effectiveness of biogas production from biomass is limited by the presence of polymeric structures, which are recalcitrant to digestion by bacteria. Therefore, pretreatments must often be applied prior to anaerobic fermentation to increase yields of biogas. Many physico-chemical pretreatments have a high energy demand and are generally costly. An alternative could be the ignition of a plasma directly in the biomass substrate. The reactive species that are generated by plasma-liquid interactions, such as hydroxyl radicals and hydrogen peroxides, could contribute significantly to the disintegration of cell walls and the breakage of poorly digestible polymers. With respect to economic, processing, and other potential benefits, a microwave instigated and sustained plasma was investigated. A microwave circuit transmitted 2-kW pulses into a recirculated sodium carboxymethyl cellulose solution, which mimicked the rheological properties of biomass. Each microwave pulse had a duration of 12.5 ms and caused the ignition of a discharge after a vapor bubble had formed. Microwaves were absorbed in the process with an efficiency of ∼97%. Slow-motion imaging showed the development of the discharge. The plasma discharges provoked a decrease in the viscosity, probably caused by the shortening of polymer chains of the cellulose derivative. The decrease in viscosity by itself could reduce processing costs and promotes bacterial activity in actual biomass. The results demonstrate the potential of microwave in-liquid plasma discharges for the pretreatment of biomass. © 2020 Author(s).
  • Item
    Direct catalytic conversion of cellulose to liquid straight-chain alkanes
    (Cambridge : Royal Society of Chemistry, 2014) Op de Beeck, Beau; Dusselier, Michiel; Geboers, Jan; Holsbeek, Jensen; Morré, Eline; Oswald, Steffen; Giebeler, Lars; Sels, Bert F.
    High yields of liquid straight-chain alkanes were obtained directly from cellulosic feedstock in a one-pot biphasic catalytic system. The catalytic reaction proceeds at elevated temperatures under hydrogen pressure in the presence of tungstosilicic acid, dissolved in the aqueous phase, and modified Ru/C, suspended in the organic phase. Tungstosilicic acid is primarily responsible for cellulose hydrolysis and dehydration steps, while the modified Ru/C selectively hydrogenates intermediates en route to the liquid alkanes. Under optimal conditions, microcrystalline cellulose is converted to 82% n-decane-soluble products, mainly n-hexane, within a few hours, with a minimum formation of gaseous and char products. The dominant route to the liquid alkanes proceeds via 5-hydroxymethylfurfural (HMF), whereas the more common pathway via sorbitol appears to be less efficient. High liquid alkane yields were possible through (i) selective conversion of cellulose to glucose and further to HMF by gradually heating the reactor, (ii) a proper hydrothermal modification of commercial Ru/C to tune its chemoselectivity to furan hydrogenation rather than glucose hydrogenation, and (iii) the use of a biphasic reaction system with optimal partitioning of the intermediates and catalytic reactions. The catalytic system is capable of converting subsequent batches of fresh cellulose, enabling accumulation of the liquid alkanes in the organic phase during subsequent runs. Its robustness is illustrated in the conversion of the raw (soft)wood sawdust.