6 results
Search Results
Now showing 1 - 6 of 6
- Item8 fs laser pulses from a compact gas-filled multi-pass cell(Washington, DC : Soc., 2021) Rueda, P.; Videla, F.; Witting, T.; Torchia, G.A.; Furch, F.J.Compression of 42 fs, 0.29 mJ pulses from a Ti:Sapphire amplifier down to 8 fs (approximately 3 optical cycles) is demonstrated by means of spectral broadening in a compact multi-pass cell filled with argon. The efficiency of the nonlinear pulse compression is limited to 45 % mostly by losses in the mirrors of the cell. The experimental results are supported by 3-dimensional numerical simulations of the nonlinear pulse propagation in the cell that allow us to study spatio-spectral properties of the pulses after spectral broadening.
- ItemSpace-time focusing and coherence properties of supercontinua in multipass cells(College Park, MD : APS, 2021) Mei, Chao; Steinmeyer, GünterThe situation of self-compression and concomitant supercontinuum generation in a multipass cell is analyzed in numerical simulations. This study focuses on multipass cells that contain a dielectric slab as nonlinear medium and overcompensate the dispersion of the slab with intracavity dispersive coatings. A 2D+1 unidirectional pulse propagation equation is utilized to simulate the pulse evolution through successive passes. We observe a previously unreported effect of space-time focusing, leading to a pronounced blue shift, similar to what had been observed in filament compression experiments before. This effect competes with detrimental pulse breakup, which can nevertheless be mitigated under suitable choice of cavity parameters. We further analyze resulting coherence properties, in both the time and frequency domains. Our analysis shows highly favorable properties of multipass cell compression schemes when nonlinearity and dispersion are distributed over as many cavity passes as possible. This quasicontinuous approach is particularly promising for spectral broadening schemes that allow for stabilization of the carrier-envelope phase.
- ItemStretching and heating cells with light - Nonlinear photothermal cell rheology([London] : IOP, 2020) Huster, Constantin; Rekhade, Devavrat; Hausch, Adina; Ahmed, Saeed; Hauck, Nicolas; Thiele, Julian; Guck, Jochen; Kroy, Klaus; Cojoc, GheorgheStretching and heating are everyday experiences for skin and tissue cells. They are also standard procedures to reduce the risk for injuries in physical exercise and to relieve muscle spasms in physiotherapy. Here, we ask which immediate and long-term mechanical effects of such treatments are quantitatively detectable on the level of individual living cells. Combining versatile optical stretcher techniques with a well-tested mathematical model for viscoelastic polymer networks, we investigate the thermomechanical properties of suspended cells with a photothermal rheometric protocol that can disentangle fast transient and slow 'inelastic' components in the nonlinear mechanical response. We find that a certain minimum strength and duration of combined stretching and heating is required to induce long-lived alterations of the mechanical state of the cells, which then respond qualitatively differently to mechanical tests than after weaker/shorter treatments or merely mechanical preconditioning alone. Our results suggest a viable protocol to search for intracellular biomolecular signatures of the mathematically detected dissimilar mechanical response modes. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
- ItemContractile cell forces deform macroscopic cantilevers and quantify biomaterial performance(London : Royal Soc. of Chemistry, 2015) Allenstein, U.; Mayr, S.G.; Zink, M.Cells require adhesion to survive, proliferate and migrate, as well as for wound healing and many other functions. The strength of contractile cell forces on an underlying surface is a highly relevant quantity to measure the affinity of cells to a rigid surface with and without coating. Here we show with experimental and theoretical studies that these forces create surface stresses that are sufficient to induce measurable bending of macroscopic cantilevers. Since contractile forces are linked to the formation of focal contacts, results give information on adhesion promoting qualities and allow a comparison of very diverse materials. In exemplary studies, in vitro fibroblast adhesion on the magnetic shape memory alloy Fe–Pd and on the L-lysine derived plasma-functionalized polymer PPLL was determined. We show that cells on Fe–Pd are able to induce surface stresses three times as high as on pure titanium cantilevers. A further increase was observed for PPLL, where the contractile forces are four times higher than on the titanium reference. In addition, we performed finite element simulations on the beam bending to back up the calculation of contractile forces from cantilever bending under non-homogenous surface stress. Our findings consolidate the role of contractile forces as a meaningful measure of biomaterial performance.
- ItemMicromotor-mediated sperm constrictions for improved swimming performance(Berlin ; Heidelberg : Springer, 2021) Striggow, Friedrich; Nadporozhskaia, Lidiia; Friedrich, Benjamin M.; Schmidt, Oliver G.; Medina-Sánchez, MarianaSperm-driven micromotors, consisting of a single sperm cell captured in a microcap, utilize the strong propulsion generated by the flagellar beat of motile spermatozoa for locomotion. It enables the movement of such micromotors in biological media, while being steered remotely by means of an external magnetic field. The substantial decrease in swimming speed, caused by the additional hydrodynamic load of the microcap, limits the applicability of sperm-based micromotors. Therefore, to improve the performance of such micromotors, we first investigate the effects of additional cargo on the flagellar beat of spermatozoa. We designed two different kinds of microcaps, which each result in different load responses of the flagellar beat. As an additional design feature, we constrain rotational degrees of freedom of the cell’s motion by modifying the inner cavity of the cap. Particularly, cell rolling is substantially reduced by tightly locking the sperm head inside the microcap. Likewise, cell yawing is decreased by aligning the micromotors under an external static magnetic field. The observed differences in swimming speed of different micromotors are not so much a direct consequence of hydrodynamic effects, but rather stem from changes in flagellar bending waves, hence are an indirect effect. Our work serves as proof-of-principle that the optimal design of microcaps is key for the development of efficient sperm-driven micromotors.
- ItemPlasma medicine: An introductory review([London] : IOP, 2009) Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L.This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology-an unavoidable by-product of interdisciplinary research-is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene-helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and nonequilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.