Search Results

Now showing 1 - 2 of 2
  • Item
    Emittance Reduction of RF Photoinjector Generated Electron Beams by Transverse Laser Beam Shaping
    (Bristol : IOP Publ., 2019) Gross, M.; Qian, H.J.; Boonpornprasert, P.; Chen, Y.; Good, J.D.; Huck, H.; Isaev, I.; Koschitzki, C.; Krasilnikov, M.; Lal, S.; Li, X.; Lishilin, O.; Loisch, G.; Melkumyan, D.; Mohanty, S.K.; Niemczyk, R.; Oppelt, A.; Shaker, H.; Shu, G.; Stephan, F.; Vashchenko, G.; Will, I.
    Laser pulse shaping is one of the key elements to generate low emittance electron beams with RF photoinjectors. Ultimately high performance can be achieved with ellipsoidal laser pulses, but 3-dimensional shaping is challenging. High beam quality can also be reached by simple transverse pulse shaping, which has demonstrated improved beam emittance compared to a transversely uniform laser in the 'pancake' photoemission regime. In this contribution we present the truncation of a Gaussian laser at a radius of approximately one sigma in the intermediate (electron bunch length directly after emission about the same as radius) photoemission regime with high acceleration gradients (up to 60 MV/m). This type of electron bunch is used e.g. at the European XFEL and FLASH free electron lasers at DESY, Hamburg site and is being investigated in detail at the Photoinjector Test facility at DESY in Zeuthen (PITZ). Here we present ray-tracing simulations and experimental data of a laser beamline upgrade enabling variable transverse truncation. Initial projected emittance measurements taken with help of this setup are shown, as well as supporting beam dynamics simulations. Additional simulations show the potential for substantial reduction of slice emittance at PITZ. © Published under licence by IOP Publishing Ltd.
  • Item
    Detailed characterization of electron sources yielding first demonstration of European x-ray free-electron laser beam quality
    (College Park, Md. : APS, 2010) Stephan, F.; Boulware, C.H.; Krasilnikov, M.; Bähr, J.; Asova, G.; Donat, A.; Gensch, U.; Grabosch, H.J.; Hänel, M.; Hakobyan, L.; Henschel, H.; Ivanisenko, Y.; Jachmann, L.; Khodyachykh, S.; Khojoyan, M.; Kohler, W.; Korepanov, S.; Koss, G.; Kretzschmann, A.; Leich, H.; Ludecke, H.; Meissner, A.; Oppelt, A.; Petrosyan, B.; Pohl, M.; Riemann, S.; Rimjaem, S.; Sachwitz, M.; Schoneich, B.; Scholz, T.; Schulze, H.; Schultze, J.; Schwendicke, U.; Shapovalov, A.; Spesyvtsev, R.; Staykov, L.; Tonisch, F.; Walter, T.; Weisse, S.; Wenndorff, R.; Winde, M.; Vu, L.V.; Durr, H.; Kamps, T.; Richter, D.; Sperling, M.; Ovsyannikov, R.; Vollmer, A.; Knobloch, J.; Jaeschke, E.; Boster, J.; Brinkmann, R.; Choroba, S.; Flechsenhar, K.; Flottmann, K.; Gerdau, W.; Katalev, V.; Koprek, W.; Lederer, S.; Martens, C.; Pucyk, P.; Schreiber, S.; Simrock, S.; Vogel, E.; Vogel, V.; Rosbach, K.; Bonev, I.; Tsakov, I.; Michelato, P.; Monaco, L.; Pagani, C.; Sertore, D.; Garvey, T.; Will, I.; Templin, I.; Sandner, W.; Ackermann, W.; Arévalo, E.; Gjonaj, E.; Muller, W.F.O.; Schnepp, S.; Weiland, T.; Wolfheimer, F.; Ronsch, J.; Rossbach, J.
    The photoinjector test facility at DESY, Zeuthen site (PITZ), was built to develop and optimize photoelectron sources for superconducting linacs for high-brilliance, short-wavelength free-electron laser (FEL) applications like the free-electron laser in Hamburg (FLASH) and the European x-ray free-electron laser (XFEL). In this paper, the detailed characterization of two laser-driven rf guns with different operating conditions is described. One experimental optimization of the beam parameters was performed at an accelerating gradient of about 43 MV/m at the photocathode and the other at about 60 MV/m. In both cases, electron beams with very high phase-space density have been demonstrated at a bunch charge of 1 nC and are compared with corresponding simulations. The rf gun optimized for the lower gradient has surpassed all the FLASH requirements on beam quality and rf parameters (gradient, rf pulse length, repetition rate) and serves as a spare gun for this facility. The rf gun studied with increased accelerating gradient at the cathode produced beams with even higher brightness, yielding the first demonstration of the beam quality required for driving the European XFEL: The geometric mean of the normalized projected rms emittance in the two transverse directions was measured to be 1.260±13 mmmrad for a 1-nC electron bunch. When a 10% charge cut is applied excluding electrons from those phase-space regions where the measured phase-space density is below a certain level and which are not expected to contribute to the lasing process, the normalized projected rms emittance is about 0.9 mmmrad. © 2010 The American Physical Society.