Search Results

Now showing 1 - 2 of 2
  • Item
    Three-Dimensional Shapes of Spinning Helium Nanodroplets
    (College Park, Md. : APS, 2018) Langbehn, Bruno; Sander, Katharina; Ovcharenko, Yevheniy; Peltz, Christian; Clark, Andrew; Coreno, Marcello; Cucini, Riccardo; Drabbels, Marcel; Finetti, Paola; Di Fraia, Michele; Giannessi, Luca; Grazioli, Cesare; Iablonskyi, Denys; LaForge, Aaron C.; Nishiyama, Toshiyuki; Oliver Álvarez de Lara, Verónica; Piseri, Paolo; Plekan, Oksana; Ueda, Kiyoshi; Zimmermann, Julian; Prince, Kevin C.; Stienkemeier, Frank; Callegari, Carlo; Fennel, Thomas; Rupp, Daniela; Möller, Thomas
    A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large data set allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale.
  • Item
    Nanoscopic interactions of colloidal particles can suppress millimetre drop splashing
    (London : Royal Soc. of Chemistry, 2021) Thoraval, Marie-Jean; Schubert, Jonas; Karpitschka, Stefan; Chanana, Munish; Boyer, François; Sandoval-Naval, Enrique; Dijksman, J. Frits; Snoeijer, Jacco H.; Lohse, Detlef
    The splashing of liquid drops onto a solid surface is important for a wide range of applications, including combustion and spray coating. As the drop hits the solid surface, the liquid is ejected into a thin horizontal sheet expanding radially over the substrate. Above a critical impact velocity, the liquid sheet is forced to separate from the solid surface by the ambient air, and breaks up into smaller droplets. Despite many applications involving complex fluids, their effects on splashing remain mostly unexplored. Here we show that the splashing of a nanoparticle dispersion can be suppressed at higher impact velocities by the interactions of the nanoparticles with the solid surface. Although the dispersion drop first shows the classical transition from deposition to splashing when increasing the impact velocity, no splashing is observed above a second higher critical impact velocity. This result goes against the commonly accepted understanding of splashing, that a higher impact velocity should lead to even more pronounced splashing. Our findings open new possibilities to deposit large amount of complex liquids at high speeds.