Search Results

Now showing 1 - 2 of 2
  • Item
    Schottky contacts to In2O3
    (New York : American Institute of Physics, 2014) von Wenckstern, H.; Splith, D.; Schmidt, F.; Grundmann, M.; Bierwagen, O.; Speck, J.S.
    n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.
  • Item
    Feasibility of electrostatic microparticle propulsion
    (College Park, MD : Institute of Physics Publishing, 2008) Trottenberg, T.; Kersten, H.; Neumann, H.
    This paper discusses the feasibility of electrostatic space propulsion which uses microparticles as propellant. It is shown that particle charging in a plasma is not sufficient for electrostatic acceleration. Moreover, it appears technically difficult to extract charged particles out of a plasma for subsequent acceleration without them being discharged. Two novel thruster concepts are proposed. In the first one, particles with low secondary electron emission are charged using energetic electrons in the order of magnitude of 100eV. The second concept charges the particles by contact with needle electrodes at high electrostatic potential (∼20kV). Both methods allow the maximum possible charges on microparticles. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.