Search Results

Now showing 1 - 3 of 3
  • Item
    Evidence for Efficient Pathway to Produce Slow Electrons by Ground-state Dication in Clusters
    (Bristol : IOP Publ., 2017) You, Daehyun; Fukuzawa, Hironobu; Sakakibara, Yuta; Takanashi, Tsukasa; Ito, Yuta; Maliyar, Gianluigi G.; Motomura, Koji; Nagaya, Kiyonobu; Nishiyama, Toshiyuki; Asa, Kazuki; Sato, Yuhiro; Saito, Norio; Oura, Masaki; Schöffler, Markus; Kastirke, Gregor; Hergenhahn, Uwe; Stumpf, Vasili; Gohkberg, Kirill; Kuleff, Alexander I.; Cederbaum, Lorenz S.; Ueda, Kiyoshi
    We present an experimental evidence for a so-far unobserved, but potentially very important step relaxation cascades following inner-shell ionization of a composite system: Multiply charged ionic states created after Auger decay may be neutralized by electron transfer from a neighboring species, producing at the same time a low-energy free electron. This electron transfer-mediated decay (ETMD) called process is effective even after Auger decay into the dicationic ground state. Here, we report the ETMD of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.
  • Item
    Quantifying Rate-and Temperature-Dependent Molecular Damage in Elastomer Fracture
    (College Park, Md. : APS, 2020) Slootman, Juliette; Waltz, Victoria; Yeh, C. Joshua; Baumann, Christoph; Göstl, Robert; Comtet, Jean; Creton, Costantino
    Elastomers are highly valued soft materials finding many applications in the engineering and biomedical fields for their ability to stretch reversibly to large deformations. Yet their maximum extensibility is limited by the occurrence of fracture, which is currently still poorly understood. Because of a lack of experimental evidence, current physical models of elastomer fracture describe the rate and temperature dependence of the fracture energy as being solely due to viscoelastic friction, with chemical bond scission at the crack tip assumed to remain constant. Here, by coupling new fluorogenic mechanochemistry with quantitative confocal microscopy mapping, we are able to quantitatively detect, with high spatial resolution and sensitivity, the scission of covalent bonds as ordinary elastomers fracture at different strain rates and temperatures. Our measurements reveal that, in simple networks, bond scission, far from being restricted to a constant level near the crack plane, can both be delocalized over up to hundreds of micrometers and increase by a factor of 100, depending on the temperature and stretch rate. These observations, permitted by the high fluorescence and stability of the mechanophore, point to an intricate coupling between strain-rate-dependent viscous dissipation and strain-dependent irreversible network scission. These findings paint an entirely novel picture of fracture in soft materials, where energy dissipated by covalent bond scission accounts for a much larger fraction of the total fracture energy than previously believed. Our results pioneer the sensitive, quantitative, and spatially resolved detection of bond scission to assess material damage in a variety of soft materials and their applications. © 2020 authors. Published by the American Physical Society.
  • Item
    The magneto-optical gradient effect in an exchange-biased thin film: Experimental evidence for classical diffraction theory
    (Milton Park : Taylor & Francis, 2010) Schäfer, R.; Hamann, C.; McCord, J.; Schultz, L.; Kamberský, V.
    The magneto-optical gradient effect decorates the boundaries of in-plane domains even at perpendicular incidence of light in an optical polarization microscope. For its explanation, the classical magneto-optical diffraction theory was previously used to derive the effect from the same gyrotropic interaction as the Kerr effect. In order to explain the symmetry of the experimentally observed contrast on bulk ferromagnetic crystals, planar as well as perpendicular subsurface gradients in the magnetization had to be assumed. This was particularly needed when the surface magnetizations in neighboring domains pointed head-on and a gradient contrast appeared also in conditions of vanishing gyrotropic interaction at the surface. The gradient contrast in such conditions should not appear in very thin films where perpendicular magnetization gradients are not enforced by reduction of magnetostatic energy. Here we present the first experimental confirmation of this expectation, thus closing an experimental gap in verifying the predictions of the diffraction theory.